Теория умножения. Типичные ошибки при решении задач по теории вероятностей

Сложение и умножение вероятностей. В этой статье речь пойдёт о решении задач по теории вероятностей. Ранее мы с вами уже разбирали некоторые простейшие задания, для их решения достаточно знать и понимать формулу (советую повторить).

Есть тины задачи немного сложнее, для их решения необходимо знать и понимать: правило сложения вероятностей, правило умножения вероятностей, понятия зависимые и независимые события, противоположные события, совместные и несовместные события. Не пугайтесь определений, все просто)). В этой статье мы с вами именно такие задачи и рассмотрим.

Немного важной и простой теории:

несовместными , если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

Классический пример: при бросании игральной кости (кубика) может выпасть только единица, либо только двойка, либо только тройка и т.д. Каждое из этих событий несовместно с другими и совершение одного из них исключает совершение другого (в одном испытании). Тоже самое с монетой — выпадение «орла» исключает возможность выпадение «решки».

Также это относится и к более сложным комбинациям. Например, горят две лампы освещения. Каждая из них может перегореть или не перегореть в течение какого-то времени. Существую варианты:

  1. Перегорает первая и перегорает вторя
  2. Перегорает первая и не перегорает вторая
  3. Не перегорает первая и перегорает вторая
  4. Не перегорает первая и перегорает вторая.

Все эти 4 варианта событий несовместны — они вместе произойти просто не могут и никакое из них с любым другим...

Определение: События называются совместными , если появление одного из них не исключает появление другого.

Пример: из колоды карт будет взята дама и из колоды карт будет взята карта пик. Рассматриваются два события. Данные события не исключают друг друга — можно вытащить даму пик и, таким образом, произойдут оба события.

О сумме вероятностей

Суммой двух событий А и В называется событие А+В, которое состоит в том, что наступит или событие А или событие В или оба одновременно.

Если происходят несовместные события А и В, то вероятность суммы данных событий равна сумме вероятностей событий:


Пример с игральной костью:

Бросаем игральную кость. Какова вероятность выпадения числа меньшего четырёх?

Числа меньшие четырёх это 1,2,3. Мы знаем, что вероятность выпадения единицы равна 1/6, двойки 1/6, тройки 1/6. Это несовместные события. Можем применить правило сложения. Вероятность выпадения числа меньшего четырёх равна:

Действительно, если исходить из понятия классической вероятности: то число всевозможных исходов равно 6 (число всех граней кубика), число благоприятных исходов равно 3 (выпадение единицы, двойки или тройки). Искомая вероятность равна 3 к 6 или 3/6 = 0,5.

*Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без учёта их совместного появления: Р(А+В)=Р(А)+Р(В) -Р(АВ)

Об умножении вероятностей

Пусть происходят два несовместных события А и В, их вероятности соответственно равны Р(А) и Р(В). Произведением двух событий А и В называют такое событие А·В, которое состоит в том что эти события произойдут вместе, то есть произойдёт и событие А и событие В. Вероятность такого события равна произведению вероятностей событий А и В. Вычисляется по формуле:

Как вы уже заметили логическая связка «И» означает умножение.

Пример с той же игральной костью: Бросаем игральную кость два раза. Какова вероятность выпадения двух шестёрок?

Вероятность выпадения шестёрки первый раз равна 1/6. Во второй раз так же равна 1/6. Вероятность выпадения шестёрки и в первый раз и во второй раз равна произведению вероятностей:

Говоря простым языком: когда в одном испытании происходит некоторое событие, И далее происходит(ят) другое (другие), то вероятность того что они произойдут вместе равна произведению вероятностей этих событий.

Задачи с игральной костью мы решали, но пользовались только логическими рассуждениями, формулу произведения не использовали. В рассматриваемых же ниже задачах без формул не обойтись, вернее с ними будет получить результат проще и быстрее.

Стоит сказать ещё об одном нюансе. При рассуждениях в решении задач используется понятие ОДНОВРЕМЕННОСТЬ совершения событий. События происходят ОДНОВРЕМЕННО — это не означает, что они происходят в одну секунду (в один момент времени). Это значит, что они происходят в некоторый промежуток времени (при одном испытании).

Например:

Две лампы перегорают в течение года (может быть сказано — одновременно в течение года)

Два автомата ломаются в течении месяца (может быть сказано — одновременно в течение месяца)

Игральная кость бросается три раза (очки выпадают одновременно это означает при одном испытании)

Биатлонист делает пять выстрелов. События (выстрелы) происходят во время одного испытания.

События А и В являются НЕзависимыми, если вероятность любого из них не зависит от появления либо непоявления другого события.

Рассмотрим задачи:

Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 35 % этих стекол, вторая –– 65%. Первая фабрика выпускает 4% бракованных стекол, а вторая –– 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Первая фабрика выпускает 0,35 продукции (стёкол). Вероятность купить бракованное стекло с первой фабрики равна 0,04.

Вторая фабрика выпускает 0,65 стёкол. Вероятность купить бракованное стекло со второй фабрики равна 0,02.

Вероятность того, что стекло куплено на первой фабрике И при этом оно окажется бракованным равна 0,35∙0,04 = 0,0140.

Вероятность того, что стекло куплено на второй фабрике И при этом оно окажется бракованным равна 0,65∙0,02 = 0,0130.

Покупка в магазине бракованного стекла подразумевает, что оно (бракованное стекло) куплено ЛИБО с первой фабрики, ЛИБО со второй. Это несовместные события, то есть полученные вероятности складываем:

0,0140 + 0,0130 = 0,027

Ответ: 0,027

Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,62. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,2. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Возможность выиграть первую и вторую партию не зависят друг от друга. Сказано, что гроссмейстер должен выиграть оба раза, то есть выиграть первый раз И при этом выиграть ещё и второй раз. В случае, когда независимые события должны произойти совместно вероятности этих событий перемножаются, то есть используется правило умножения.

Вероятность произведения указанных событий будет равна 0,62∙0,2 = 0,124.

Ответ: 0,124

На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,3. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

То есть необходимо найти вероятность того, что школьнику достанется вопрос ЛИБО по теме «Вписанная окружность», ЛИБО по теме «Параллелограмм». В данном случае вероятности суммируются, так как это события несовместные и произойти может любое из этих событий: 0,3 + 0,25 = 0,55.

*Несовместные события – это события, которые не могут произойти одновременно.

Ответ: 0,55

Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,9. Найдите вероятность того, что биатлонист первые четыре раза попал в мишени, а последний промахнулся. Результат округлите до сотых.

Поскольку биатлонист попадает в мишень с вероятностью 0,9, то он промахивается с вероятностью 1 – 0,9 = 0,1

*Промах и попадание это события, которые при одном выстреле не могут произойти одновременно, сумма вероятностей этих событий равна 1.

Речь идёт о совершении нескольких (независимых) событий. Если происходит событие и при этом происходит другое (последующие) в одно время (испытание), то вероятности этих событий перемножаются.

Вероятность произведения независимых событий равна произведению их вероятностей.

Таким образом, вероятность события «попал, попал, попал, попал, промахнулся» равна 0,9∙0,9∙0,9∙0,9∙0,1 = 0,06561.

Округляем до сотых, получаем 0,07

Ответ: 0,07

В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,07 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Найдем вероятность того, что неисправны оба автомата.

Эти события независимые, значит вероятность будет равна произведению вероятностей этих событий: 0,07∙0,07 = 0,0049.

Значит, вероятность того, что исправны оба автомата или какой-то из них будет равна 1 – 0,0049 = 0,9951.

*Исправны оба и какой-то один полностью – отвечает условию «хотя бы один».

Можно представить вероятности всех (независимых) событий для проверки:

1. «неисправен-неисправен» 0,07∙0,07 = 0,0049

2. «исправен-неисправен» 0,93∙0,07 = 0,0651

3. «неисправен-исправен» 0,07∙0,93 = 0,0651

4. «исправен-исправен» 0,93∙0,93 = 0,8649

Чтобы определить вероятность того, что исправен хотя бы один автомат, необходимо сложить вероятности независимых событий 2,3 и 4: Достоверным событием называется событие, которое наверняка произойдет в результате опыта. Событие называется невозможным, если оно никогда не произойдет в результате опыта.

Например, если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий.

Определение: События называются равновозможными , если нет оснований считать, что одно из них появится в результате опыта с большей вероятностью.

В приведенном выше примере появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров. Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного.

В мы рассмотрим ещё задачи, где используется сумма и произведение вероятностей событий, не пропустите!

На этом всё. Успехов вам!

С уважением, Александр Крутицких.

Марья Ивановна ругает Васю:
— Петров, ты почему вчера не был в школе?!
— Мне мама вчера штаны постирала.
— Ну и что?
— А я шел мимо дома и увидел, что Ваши висят. Думал, не придете.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Тип задания: 4

Условие

Вероятность того, что аккумулятор не заряжен, равна 0,15. Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.

Показать решение

Решение

Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85. Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A и B события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85. Событие «оба аккумулятора заряжены» — это пересечение событий A \cap B, его вероятность равна P(A \cap B) = P(A)\cdot P(B) = 0,85\cdot 0,85 = 0,7225.

Ответ

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

Вероятность того, что ручка бракованная, равна 0,05 . Покупатель в магазине приобретает случайную упаковку, которая содержит две ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.

Показать решение

Решение

Вероятность того, что ручка исправная, равна 1-0,05 = 0,95. Найдём вероятность события «обе ручки исправны». Обозначим через A и B события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95. Событие «обе ручки исправны» — это пересечение событий A\cap B, его вероятность равна P(A\cap B) = P(A)\cdot P(B) = 0,95\cdot 0,95 = 0,9025.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.

Показать решение

Решение

Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).

Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.

Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4 раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна \frac12\cdot\frac12\cdot\frac12\cdot\frac12= 0,5^4= 0,0625.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

Стоянка освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,4. Найдите вероятность того, что за год хотя бы одна лампа не перегорит.

Показать решение

Решение

Сначала найдём вероятность события «обе лампы перегорели в течение года», противоположного событию из условия задачи. Обозначим через A и B события «первая лампа перегорела в течение года» и «вторая лампа перегорела в течение года». По условию P(A) = P(B) = 0,4. Событие «обе лампы перегорели в течение года» — это A \cap B, его вероятность равна P(A \cap B) = P(A) \cdot P(B) = 0,4 \cdot 0,4 = 0,16 (так как события A и B независимы).

Искомая вероятность равна 1 - P(A \cap B) = 1 - 0,16 = 0,84.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

В гостинице стоят два кулера. Каждый из них может быть неисправен с вероятностью 0,2 независимо от другого кулера. Определите вероятность того, что хотя бы один из этих кулеров исправен.

Показать решение

Решение

Сначала найдём вероятность события «оба кулера неисправны», противоположного событию из условия задачи. Обозначим через A и B события «первый кулер неисправен» и «второй кулер неисправен». По условию P(A) = P(B) = 0,2. Событие «оба кулера неисправны» — это A \cap B , пересечение событий A и B , его вероятность равна P(A \cap B) = P(A)\cdot P(B) = 0,2\cdot 0,2 = 0,04 (так как события A и B независимы). Искомая вероятность равна 1-P(A \cap B)=1-0,04=0,96.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

На экзамене по физике студент отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что этот вопрос на тему «Механика», равна 0,25 . Вероятность того, что этот вопрос на тему «Электричество», равна 0,3 . Вопросов, которые относились бы сразу к двум темам, нет. Найдите вероятность того, что студенту попадётся вопрос по одной из этих двух тем.

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей. Теорема сложения вероятностей. Теорема умножения вероятностей . Решение простейших задач на определение вероятности с использованием сложения вероятностей.

Методические указания по теме 3.1:

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей:

Изучение каждого явления в порядке наблюдения или производства опыта связан с осуществлением некоторого комплекса условий (испытаний). Всякий результат или исход испытания называется событием.

Если событие при заданных условиях может произойти или не произойти, то оно называется случайным. В том случае, когда событие должно непременно произойти, его называют достоверным , а в том случае, когда оно заведомо не может произойти, - невозможным.

События называются несовместными, если каждый раз возможно появление только одного из них. События называются совместными, если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании.

События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны.

Вероятность события рассматривается как мера объективной возможности появления случайного события.

Вероятностью события называется отношение числа исходов m , благоприятствующих наступлению данного события , к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.

Вероятность любого события не может быть меньше нуля и больше единицы, т.е. . Невозможному событию соответствует вероятность , а достоверному - вероятность

Пример 1. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?

Общее число различных исходов есть n = 1000. Число исходов, благоприятствующих получению выигрыша, составляет m = 200. Согласно формуле, получим .

Пример 2. Из урны, в которой находятся 5 белых и 3 черных шара, вынимают один шар. Найти вероятность того, что шар окажется черным.

Обозначим событие, состоящее в появлении черного шара, через . Общее число случаев . Число случаев m , благоприятствующих появлению события , равно 3. По формуле получим .

Пример 3. Из урны, в которой находятся 12 белых и 8 черных шаров, вынимают наудачу два шара. Какова вероятность того, что оба шара окажутся черными?

Обозначим событие, состоящее в появлении двух черных шаров через . Общее число возможных случаев n равно числу сочетаний из 20 элементов (12 + 8) по два:

Число случаев m , благоприятствующих событию , составляет


По формуле находим вероятность появления двух черных шаров:

Теорема сложения вероятностей. Решение простейших задач на определение вероятности с использованием теоремы сложения вероятностей:

Теорема сложения вероятностей несовместных событий. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равно сумме вероятностей этих событий:

Теорема сложения вероятностей совместных событий. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

Пример 4. В ящике в случайном порядке разложены 20 деталей, причем пять из них стандартные. Рабочий берет наудачу три детали. Найти вероятность того, что по крайней мере она из взятых деталей окажется стандартной.

Очевидно, что по крайней мере одна из взятых деталей окажется стандартной, если произойдет любое из трех несовместных событий: B - одна деталь стандартная, две нестандартные; C - две детали стандартные, одна нестандартная и D - три детали стандартные.

Таким образом, событие A можно представить в виде суммы этих трех событий: A = B + C + D. По теореме сложения имеем P(A) = P(B) + P(C) + P(D). Находим вероятность каждого из этих событий:

Сложив найденные величины, получим

Пример 5. Найти вероятность того, что наудачу взятое двузначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно.

Пусть A - событие, состоящее в том, что наудачу взятое число кратно 3, а B - в том, что оно кратно 5. Найдем Так как A и B совместные события, то воспользуемся формулой:

Всего имеется 90 двузначных чисел: 10, 11, 98, 99. Из них 30 являются кратными 3 (благоприятствуют наступлению события A ); 18 - кратными 5 (благоприятствуют наступлению события B ) и 6 - кратными одновременно 3 и 5 (благоприятствуют наступлению события AB ). Таким образом, т.е.

Теорема умножения вероятностей:

Теорема умножения вероятностей независимых событий. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

Вероятность появления нескольких событий, независимых в совокупности, вычисляется по формуле:

Теорема умножения вероятностей зависимых событий. Вероятность совместного появления двух зависимых событий равна произведению одного из них на условную вероятность второго:

Пример 6. В одной урне находятся 4 белых и 8 черных шаров, в другой - 3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.

Пусть - появление белого шара из первой урны, а - появление белого шара из второй урны. Очевидно, что события и независимы. Найдем

По формуле получим:

Вопросы для самопроверки по теме 3.1:

1. Что такое событие?

2. Какие события называются достоверными?

3. Какие события называются невозможными?

4. Дать определение вероятности.

5. Сформулировать теорему сложения вероятностей.

6. Сформулировать теорему умножения вероятностей.

Задания для самостоятельного решения по теме 3.1:

1. В ящике в случайном порядке положены 10 деталей, из которых 4 стандартных. Контролер взял наудачу 3 детали. Найти вероятность того, что хотя бы одна из взятых деталей оказалась стандартной.

2. В урне находятся 10 белых, 15 черных, 20 синих и 25 красных шаров. Найдите вероятность того, что вынутый шар окажется: 1) белым; 2) черным или красным.

3. Найдите вероятность того, что наудачу взятое двузначное число окажется кратным либо 4, либо 5, либо тому и другому одновременно.

4. Рабочий обслуживает два автомата, работающих независимо друг от друга. Вероятность того, что в течение часа первый автомат не потребует внимания рабочего, равна 0,8, а для второго автомата эта вероятность равна0,7. Найдите вероятность того, что в течение часа ни один и автоматов не потребует внимания рабочего.

5. В урне находятся 6 шаров, из которых 3 белых. Наудачу вынуты один за другим два шара. Вычислите вероятность того, что оба шара окажутся белыми.

6. В урне находятся 10 белых и 6 черных шаров. Найдите вероятность того, что три наудачу вынутых один за другим шара окажутся черными.

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность () наступления интересующего нас события от того, как развиваются остальные события.

В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события?

Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события.

События А и В называются независимыми , если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы.

Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) - вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 =0,7; р 2 =0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

Решение: как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р 1 *р 2 =0,56.


Что произойдет, с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается.


Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).


Эта схема очень удобна для анализа последовательных случайных событий.

Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях ? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.




Решение: По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045.

Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля.

И все-таки польза от наших оценок есть.

Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные.

Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять.

Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов.

Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение. Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.




Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает.

Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных.




Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

Тип занятия: изучение нового материала.
Учебно-воспитательные задачи:
- дать понятие о случайном событии, вероятности события;
- научить вычислять вероятности события; вероятности случайных событий по классическому определению;
- научить применять теоремы сложения и умножения вероятностей для решения задач;
- продолжать формировать интерес к математике посредством решения задач с применением классического определения вероятности для непосредственного подсчета вероятностей явлений;
- прививать интерес к математике, используя исторический материал;
- воспитывать осознанное отношение к процессу обучения, прививать чувство ответственности за качество знаний, осуществлять самоконтроль за процессом решения и оформления упражнений.

Обеспечение занятия:
- карточки-задания для индивидуального опроса;
- карточки-задания для проверочной работы;
- презентация.

Студент должен знать:
- определения и формулы числа перестановок, размещений и сочетаний;
- классическое определение вероятности;
- определения суммы событий, произведения событий; формулировки и формулы теорем сложения и умножения вероятностей.

Студент должен уметь:
- вычислять перестановки, размещения и сочетания;
- вычислять вероятность события используя классическое определение и формулы комбинаторики;
- решать задачи на применение теорем сложения и умножения вероятностей.

Мотивация познавательной деятельности студентов.
Преподаватель сообщает, что возникновение теории вероятностей относится к середине XVII в. и связанно с исследованием Б. Паскаля, П. Ферма и Х.Гюйгенса (1629-1695) . Крупный шаг в развитии теории вероятности связан с работами Я.Бернулли (1654-1705). Ему принадлежит первое доказательство одного из важнейших положений теории вероятностей - законом больших чисел. Следующий этап в развитии теории связан с именами А.Муавра (1667-1754) , К. Гаусса, П. Лапласа (1749-1827) , С.Пуассона (1781-1840). Среди ученых Петербургской школой следует назвать имена А.М. Ляпунова (1857-1918) и А.А Маркова (1856-1922) . После работ этих математиков во всем мире теорию вероятностей стали называть “Русской наукой”. В средине 20-х годов А.Я. Хинчин (1894-1959) и А.Н. Колмогорова создали Московскую школу теории вероятностей. Вклад акад. А.Н.Колмогоров – лауреата Ленинской премии, международной премии им. Б. Больцано, члена ряда зарубежных академиков – в современную математику огромен. Заслуга А.Н.Колмогорова состоит не только в разработке новых научных теорий, но и еще в большей степени в том, что он воспитал целую плеяду талантливых ученых (акад. АН УССР Б.В. Гнеденко, акад. Ю.В. Прохоров, Б.А. Севастьянов и др.).
Теория вероятностей – математическая наука, изучающая закономерности случайных величин,- за последнее десятилетие превратилась в один из основных методов современных науки и техники. Бурное развитие теории автоматического регулирования привело к необходимости решать многочисленные вопросы, связанные с выяснением возможного хода процессов, на которые влияют случайные факторы. Теория вероятностей необходима широкому кругу специалистов – физикам, биологам, врача, экономистам, инженерам, военным, организаторам производства и т.д.

Ход занятия.

I . Организационный момент.

II . Проверка домашнего задания
Провести фронтальный опрос в виде ответов на вопросы:

Проверить решение упражнений:

  • Сколькими способами можно составить список из 10 человек?
  • Сколькими способами из 15 рабочих можно создать бригады по 5 человек в каждой?
  • 30 учащихся обменялись друг с другом фотокарточками. Сколько всего было роздано фотокарточек?

III . Изучение нового материала.
В толковом словаре С.И. Ожегова и Н.Ю. Шведовой читаем: «Вероятность – возможность исполнения, осуществимости чего-нибудь». Мы часто употребляем в повседневной жизни «вероятно», «вероятнее», «невероятно», вовсе не имея в виду конкретные количественные оценки этой возможности исполнения.
Основатель современной теории вероятностей А.Н. Колмогоров писал о вероятности так: «Вероятность математическая – это числовая характеристика степени возможности появления какого-либо определенного события в тех или иных определенных, могущих повторяться неограниченное число раз условиях».
Итак, в математике вероятность измеряется числом. Совсем скоро мы выясним, как именно это можно сделать. Но начнем мы с обсуждения того, у каких событий бывает «математическая вероятность» и что представляют собой эти «определенные, могущие повторяться неограниченное число раз условия». Именно поэтому рассмотрим случайные события и случайные эксперименты.
Нужно сказать, что теория вероятностей, как никакая другая область математики, полна противоречий и парадоксов. Объяснение этому очень простое – она слишком тесно связана с реальной, окружающей нас действительностью. Долгое время ее вместе с математической статистикой даже не хотели причислять к математическим дисциплинам, считая их сугубо прикладными науками.
Только в первой половине прошлого века, в основном благодаря трудам нашего великого соотечественника А.Н. Колмогорова, имя которого уже упоминалось выше, были построены математические основания теории вероятностей, которые позволили отделить собственно науку от ее приложений. Подход, предложенный Колмогоровым, теперь принято называть аксиоматическим, поскольку вероятность в нем (а точнее, вероятностное пространство) определяется как некая математическая структура, удовлетворяющая определенной системе аксиом.
Именно на этом подходе построен современный вузовский курс теории вероятностей, через который прошли в свое время все нынешние учителя математики. Однако в школе такой подход к изучению вероятности (да и математики в целом) вряд ли разумен. Если в вузе основной акцент делается на изучении математического аппарата для исследования вероятностных моделей, то в школе ученик должен научиться эти модели строить, анализировать, проверять их адекватность реальным ситуациям. Такую точку зрения разделяют сегодня большинство ученых, занимающихся проблемами школьного математического образования
В современных школьных учебниках можно найти следующее определение: событие называется случайным , если при одних и тех же условиях оно может как произойти, так и не произойти. Случайным будет, например, событие «При подбрасывании игрального кубика выпадет 6 очков».
В приведенном определении неявно подразумевается одно важное требование, которое необходимо подчеркнуть: мы должны иметь возможность неоднократно воспроизводить одни и те же условия, в которых наблюдается данное событие (например, подбрасывать кубик),- иначе невозможно судить о его случайности.
Стало быть, говоря о любом случайном событии, мы всегда имеем в виду наличие определенных условий, без которых об этом событии вообще не имеет смысла говорить. Этот комплекс условий называют случайным опытом или случайным экспериментом .
В дальнейшем мы будем называть случайным любое событие, связанное со случайным экспериментом . До эксперимента, как правило, невозможно точно сказать, произойдет данное событие, или не произойдет – это выясняется лишь после его завершения. Но неспроста мы сделали оговорку «как правило»: в теории вероятностей принято считать случайными все события, связанные со случайным экспериментом, в том числе:

  • невозможные , которые никогда не могут произойти;
  • достоверные, которые происходят при каждом таком эксперименте.

Например, событие «На игральном кубике выпадет 7 очков» - невозможное, а «На игральном кубике выпадет меньше семи очков» - достоверное. Разумеется, если речь идет о кубике, на гранях которого написаны числа от 1 до 6.
События называются несовместными, если каждый раз возможно появление только одного из них. События называются совместными , если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании (В урне два шара – белый и черный, появление черного шара не исключает появление белого при том же испытании). События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны. Вероятность события рассматривается как мера объективной возможности появления случайного события.

Обозначения:
Случайные события (большими буквами латинского алфавита): A,B,C,D,.. (или ). “Случайные” опускают и говорят просто “события”.
Число исходов, благоприятствующих наступлению данного события – m;
Число всех исходов (опытов) – n.
Классическое определение вероятности.
Вероятностью события A называется отношение числа исходов m, благоприятствующих наступлению данного события к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.
вероятность случайного события
Вероятность любого события не может быть меньше нуля и больше единицы, т.е. 0≤P(A)≤1
Невозможному событию соответствует вероятность P(A)=0, а достоверному – вероятность P(A)=1

Теоремы сложения вероятностей.
Теорема сложения вероятностей несовместных событий.
Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

P(A+B)=P(A)+P(B);
P(+ +…+=P(+P+…+P().

Теорема сложения вероятностей совместных событий.
Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

P(A+B)=P(A)+P(B)-P(AB)

Для трех совместных событий имеет место формула:
P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)

Событие, противоположное событию A (т.е. ненаступление события A), обозначают . Сумма вероятностей двух противоположных событий равна единице: P(A)+P()=1

Вероятность наступления события A, вычисленная в предположении, что событие B уже произошло, называется условной вероятностью события A при условии B и обозначается (A) или P(A/B).
Если A и B – независимые события, то
P(B)-(B)=(B).

События A,B,C,… называются независимыми в совокупности, если вероятность каждого из них не меняется в связи с наступлением или ненаступлением других событий по отдельности или в любой их комбинации.

Теоремы умножения вероятностей.
Теорема умножения вероятностей независимых событий.
Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:
P(AB)=P(A) P(B)

Вероятность появления нескольких событий, независимых в совокупности, вычисляется по формуле:
P()=P() P()… P().

Теорема умножения вероятностей зависимых событий.
Вероятность совместного появления двух зависимых событий равна произведению одного из них на условную вероятность второго:
P(AB)=P(A) (B)=P(B) (A)

IV . Применение знаний при решении типовых задач
Задача 1.
В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?
Решение: Событие A-билет выигрышный. Общее число различных исходов есть n=1000
Число исходов, благоприятствующих получению выигрыша, составляет m=200. Согласно формуле P(A)=, получим P(A)== = 0,2 = 0,147

Задача 4 .
В ящике в случайном порядке разложены 20 деталей, причем 5 из них стандартные. Рабочий берет наудачу 3 детали. Найти вероятность того, что по крайней мере одна из взятых деталей окажется стандартной.

Задача 5.
Найти вероятность того, что наудачу взятое двухзначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно

Задача 6.
В одной урне находятся 4 белых и 8 черных шаров, в другой – 3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.
Решение: Пусть A - появление белого шара из первой урны, а B – появление белого шара из второй урны. Очевидно, что события A и B независимы. Найдем P(A)=4/12=1/3, P(B)=3/12=1/4, получим
P(AB)=P(A) P(B)=(1/3) (1/4)=1/12=0,083

Задача 7.
В ящике находится 12 деталей, из которых 8 стандартных. Рабочий берет наудачу одну за другой две детали. Найти вероятность того, что обе детали окажутся стандартными.
Решение: Введем следующие обозначения: A – первая взятая деталь стандартная; B – вторая взятая деталь стандартная. Вероятность того, что первая деталь стандартная, составляет P(A)=8/12=2/3. Вероятность того, что вторая взятая деталь окажется стандартной при условии, что была стандартной первая деталь, т.е. условная вероятность события B, равна (B)=7/11.
Вероятность того, что обе детали окажутся стандартными, находим по теореме умножения вероятностей зависимых событий:
P(AB)=P(A) (B)=(2/3) (7/11)=14/33=0,424

Самостоятельное применение знаний, умений и навыков.
Вариант 1.

  1. Какова вероятность того, что наудачу выбранное целое число от 40 до 70 является кратным 6?
  2. Какова вероятность того, что при пяти бросаниях монеты она три раза упадет гербом к верху?

Вариант 2.

  1. Какова вероятность того, что наудачу выбранное целое число от 1 до 30 (включительно) является делителем числа 30?
  2. В НИИ работает 120 человек, из них 70 знают английский язык, 60 – немецкий, а 50 – знают оба. Какова вероятность того, что выбранный наудачу сотрудник не знает ни одного иностранного языка?

VI . Подведение итогов занятия.

VII . Домашнее задание:
Г.Н. Яковлев, математика, книга 2, § 24.1, 24.2, стр. 365-386. Упражнения 24.11, 24.12, 24.17