Переходник DVI-D VGA: рассказываем об особенностях, видах и возможных проблемах, которые могут возникнуть при использовании. Что такое DVI-разъем? Разъемы для подключения устройств вывода

Помимо того факта, что ЖК-мониторы для отображения картинки требуют цифровые данные, они отличаются от классических ЭЛТ-дисплеев ещё несколькими особенностями. К примеру, в зависимости от возможностей монитора, на ЭЛТ можно вывести практически любое разрешение, поскольку трубка не имеет чётко заданного числа пикселей.

А ЖК-мониторы из-за принципа своей работы всегда имеют фиксированное ("родное") разрешение, при котором монитор обеспечит оптимальное качество картинки. С DVI это ограничение не имеет ничего общего, так как его основная причина заключается в архитектуре ЖК-монитора.

ЖК-монитор использует массив крохотных пикселей, каждый из которых состоит из трёх диодов, по одному на основной цвет (RGB: красный, зелёный, синий). ЖК-экран, имеющий "родное" разрешение 1600x1200 (UXGA), состоит из 1,92 миллиона пикселей!

Конечно же, ЖК-мониторы способны выводить другие разрешения. Но в таких случаях картинку придётся масштабировать или интерполировать. Если, к примеру, ЖК-монитор имеет "родное" разрешение 1280x1024, то меньшее разрешение 800x600 будет растянуто до 1280x1024. Качество интерполяции зависит от модели монитора. Альтернативой является вывод уменьшенного изображения в "родном" разрешении 800x600, но при этом придётся довольствоваться чёрной рамкой.

На обоих кадрах показана картинка с экрана ЖК-монитора. Слева выведено изображение в "родном разрешении" 1280x1024 (Eizo L885). Справа находится интерполированное изображение в разрешении 800x600. В результате увеличения пикселей картинка выглядит блочной. Таких проблем на ЭЛТ-мониторах не существует.

Для отображения разрешения 1600x1200 (UXGA) с 1,92 миллиона пикселей и частотой вертикальной развёртки 60 Гц монитору требуется высокая пропускная способность. Если посчитать, то необходима частота 115 МГц. Но на частоту влияют и другие факторы, например прохождение области гашения, поэтому требуемая пропускная способность возрастает ещё больше.

Около 25% всей передаваемой информации относится ко времени гашения. Оно нужно для смены позиции электронной пушки на следующую строчку в ЭЛТ-мониторе. В то же время, ЖК-мониторам время гашения практически не требуется.

Для каждого кадра передаётся не только информация об изображении, но и учитываются границы, а также область гашения. ЭЛТ-мониторам необходимо время гашения, чтобы выключить электронную пушку по завершению вывода строчки на экране и перевести её на следующую строчку для продолжения вывода. То же самое происходит в конце картинки, то есть в нижнем правом углу - электронный луч выключается и меняет позицию на верхний левый угол экрана.

Около 25% всех пиксельных данных относятся ко времени гашения. Поскольку ЖК-мониторы электронную пушку не используют, здесь время гашения совершенно ни к чему. Но его пришлось учитывать в стандарте DVI 1.0, поскольку он позволяет подключать не только цифровые ЖК, но и цифровые ЭЛТ-мониторы (где ЦАП встроен в монитор).

Время гашения оказывается очень важным фактором при подключении ЖК-дисплея по DVI-интерфейсу, поскольку каждое разрешение требует определённой пропускной способности от передатчика (видеокарта). Чем выше требуемое разрешение, тем больше должна быть пиксельная частота TMDS-передатчика. Стандарт DVI оговаривает максимальную пиксельную частоту 165 МГц (один канал). Благодаря десятикратному умножению частоты, описанному выше, мы получаем пиковую пропускную способность данных в 1,65 Гбайт/с, которой будет достаточно для разрешения 1600x1200 на 60 Гц. Если требуется большее разрешение, то дисплей следует подключать по двухканальному DVI (Dual Link DVI), тогда два DVI-передатчика будут работать совместно, что даст удвоение пропускной способности. Подробнее этот вариант описан в следующем разделе.

Впрочем, более простым и дешёвым решением будет уменьшение данных гашения. В результате, видеокартам будет предоставлено больше пропускной способности, и даже DVI-передатчик на 165 МГц сможет справиться с более высокими разрешениями. Ещё одним вариантом можно считать уменьшение частоты горизонтального обновления экрана.

В верхней части таблицы показаны разрешения, которые поддерживает один DVI-передатчик на 165 МГц. Уменьшение данных гашения (в середине) или частоты обновления (Гц) позволяет достичь больших разрешений.


На этой иллюстрации показано, какая пиксельная частота требуется для определённого разрешения. Верхняя строчка показывает работу ЖК-монитора с уменьшенными данными гашения. Второй ряд (60Hz CRT GTF Blanking) показывает требуемую пропускную способность ЖК-монитора, если данные гашения нельзя уменьшить.

Ограничение TMDS-передатчика пиксельной частотой 165 МГц сказывается также и на максимально возможном разрешении ЖК-дисплея. Даже при уменьшении данных гашения мы всё равно упираемся в определённый предел. Да и снижение частоты горизонтального обновления может дать не очень хороший результат в некоторых приложениях.

Чтобы решить эту проблему, спецификация DVI оговаривает дополнительный режим работы, названный Dual Link. В данном случае используется сочетание двух TMDS-передатчиков, которые передают данные на один монитор через один разъём. Доступная пропускная способность удваивается до 330 МГц, чего вполне достаточно для вывода практически любого существующего разрешения. Важное замечание: видеокарта с двумя выходами DVI не является картой Dual Link, у которой два TMDS-передатчика работают через один порт DVI!

На иллюстрации показан двухканальный режим работы DVI, когда используется два TMDS-передатчика.

Впрочем, видеокарты с хорошей поддержкой DVI и уменьшенной информацией гашения будет вполне достаточно для вывода информации на один из новых 20" и 23" дисплеев Apple Cinema в "родном" разрешении 1680x1050 или 1920x1200, соответственно. В то же время, для поддержки 30" дисплея с разрешением 2560x1600 от интерфейса Dual Link уже никуда не деться.

Из-за высокого "родного" разрешения 30" дисплей Apple Cinema требует подключения по Dual Link DVI!

Хотя два разъёма DVI уже стали стандартом на high-end 3D-картах для рабочих станций, не все видеокарты потребительского уровня могут этим похвастаться. Благодаря двум разъёмам DVI мы всё же можем использовать интересную альтернативу.

На этом примере два одноканальных порта используются для подключения дисплея на девять мегапикселей (3840x2400). Картинка просто разделена на две части. Но этот режим должны поддерживать и монитор, и видеокарта.

На данный момент можно найти шесть различных разъёмов DVI. Среди них: DVI-D для полностью цифрового подключения в одноканальной и двухканальной версиях; DVI-I для аналогового и цифрового подключения в двух версиях; DVI-A для аналогового подключения и новый разъём VESA DMS-59. Чаще всего производители графических карт оснащают свои продукты двухканальным разъёмом DVI-I, даже если карта имеет один порт. С помощью адаптера порт DVI-I можно превратить в аналоговый выход VGA.

Обзор различных разъёмов DVI.


Раскладка разъёма DVI.

Спецификация DVI 1.0 не оговаривает новый двухканальный разъём DMS-59. Он был представлен рабочей группой VESA в 2003 году и позволяет вывести два выхода DVI на картах малого форм-фактора. Он также призван упростить расположение разъёмов на картах с поддержкой четырёх дисплеев.

Наконец, мы переходим к сути нашей статьи: качество TMDS-передатчиков разных графических карт. Хотя спецификация DVI 1.0 и оговаривает максимальную пиксельную частоту 165 МГц, не все видеокарты дают на ней приемлемый сигнал. Многие позволяют достичь 1600x1200 только на уменьшенных пиксельных частотах и со сниженным временем гашения. Если вы попытаетесь подключить к такой карте устройство HDTV с разрешением 1920x1080 (даже с уменьшенным временем гашения), ваш ждёт неприятный сюрприз.

Все графические процессоры, поставляемые сегодня ATi и nVidia, уже имеют встроенный на чип TMDS-передатчик для DVI. Производители карт на графических процессорах ATi чаще всего используют встроенный передатчик для стандартной комбинации 1xVGA и 1xDVI. Для сравнения, многие карты на графических процессорах nVidia используют внешний TMDS-модуль (к примеру, от Silicon Image), даже несмотря на наличие TMDS-передатчика на самом чипе. Чтобы обеспечить два DVI-выхода, производитель карты всегда устанавливает второй TMDS-чип независимо от того, на каком графическом процессоре базируется карта.

На следующих иллюстрациях показаны обычные дизайны.

Типичная конфигурация: один выход VGA и один DVI. TMDS-передатчик может быть как интегрирован в графический чип, так и вынесен на отдельный чип.

Возможные конфигурации DVI: 1x VGA и 1x Single Link DVI (A), 2x Single Link DVI (B), 1x Single Link и 1x Dual Link DVI, 2x Dual Link DVI (D). Примечание: если на карте установлены два выхода DVI, то это не означает, что они двухканальные! На иллюстрациях E и F показана конфигурация новых портов VESA DMS-59 с высокой плотностью, где обеспечивается четыре или два одноканальных выхода DVI.

Как покажет дальнейшее тестирование в нашей статье, качество выхода DVI на картах ATi или nVidia бывает весьма разным. Даже если отдельный TMDS-чип на карте известен своим качеством, это вовсе не означает, что каждая карта с этим чипом обеспечит высокое качество сигнала DVI. Даже его расположение на графической карте немало влияет на конечный результат.

Совместимость со стандартом DVI

Чтобы протестировать качество DVI современных графических карт на процессорах ATi и nVidia, мы выслали шесть образцов карт в тестовые лаборатории Silicon Image для проверки совместимости со стандартом DVI.

Что интересно, для получения лицензии DVI совсем не обязательно проводить тесты совместимости со стандартом. В результате, на рынок выходят продукты с заявленной поддержкой DVI, которые не соответствуют спецификациям. Одной из причин такого положения дел является сложная и, следовательно, дорогая процедура тестирования.

Отреагировав на эту проблему, компания Silicon Image в декабре 2003 года основала тестовый центр DVI Compliance Test Center (CTC) . Производители устройств с поддержкой DVI могут выслать свои продукты для тестирования на совместимость со стандартом DVI. Собственно, это мы и сделали с нашими шестью графическими картами.

Тесты разделены на три категории: передатчик (обычно видеокарта), кабель и приёмник (монитор). Для оценки совместимости DVI создаются так называемые глазковые диаграммы, представляющие сигнал DVI. Если сигнал не выходит за определённые границы, то тест считается пройденным. В противном случае устройство не совместимо со стандартом DVI.

На иллюстрации показана глазковая диаграмма TMDS-передатчика на частоте 162 МГц (UXGA) с передачей миллиардов битов данных.

Проверка глазковой диаграммы является самым важным тестом для оценки качества сигнала. На диаграмме заметны флуктуации сигнала (дрожь фазы, jitter), искажения амплитуды и эффект "звона". Эти тесты также позволяют наглядно увидеть качество DVI.

Тесты совместимости со стандартом DVI включают в себя следующие проверки.

  1. Передатчик: глазковая диаграмма с заданными границами.
  2. Кабели: создаются глазковые диаграммы до и после передачи сигнала, затем они сравниваются. И вновь, границы отклонения сигнала жёстко заданы. Но здесь уже допускаются большие расхождения с идеальным сигналом.
  3. Приёмник: вновь создаётся глазковая диаграмма, но опять же, допускаются ещё большие расхождения.

Самые большие проблемы при последовательной высокоскоростной передаче связаны с дрожью фазы сигнала. Если такого эффекта нет, то вы всегда можете чётко выделить сигнал на графике. Большинство флуктуаций сигнала создаются тактовым сигналом графического чипа, что приводит к появлению низкочастотной флуктуации частоты в диапазонах от 100 кГц до 10 МГц. На глазковой диаграмме флуктуация сигнала заметна по изменению частоты, данных, данных по отношению к частоте, амплитуды, слишком избыточному или слишком малому подъёму. Кроме того, измерения DVI различаются для разных частот, что необходимо учитывать при проверке глазковой диаграммы. Но благодаря глазковой диаграмме, можно наглядно оценить качество сигнала DVI.

Для измерений анализируется один миллион перекрывающихся участков с помощью осциллографа. Этого достаточно для оценки общей производительности соединения DVI, поскольку сигнал на протяжении длительного периода времени не будет существенно изменяться. Графическое представление данных производится с помощью специального программного обеспечения, которое Silicon Image создала в сотрудничестве с Tektronix. Сигнал, соответствующий спецификации DVI, не должен заступать на границы (синие области), которые автоматически прорисовываются программным обеспечением. Если сигнал попадёт на синюю область, то тест считается не пройденным, а устройство - не соответствующим спецификации DVI. Программа сразу же показывает результат.

Видеокарта не прошла тест совместимости с DVI.

Программное обеспечение сразу же показывает, прошла карта тест, или нет.

Для кабеля, передатчика и приёмника используются разные границы (глазки). Сигнал не должен заступать на эти области.

Чтобы понять, как определяется совместимость с DVI и что необходимо при этом учитывать, нам следует погрузиться в дополнительные детали.

Так как передача DVI полностью цифровая, то возникает вопрос, откуда появляется дрожание фазы сигнала. Здесь можно выдвинуть две причины. Первая - дрожание вызывается самим данными, то есть 24 параллельными битами данных, которые выдаёт графический чип. Однако данные автоматически корректируются в чипе TMDS при необходимости, что гарантирует отсутствие дрожания фазы в данных. Поэтому оставшейся причиной появления дрожания является тактовый сигнал.

На первый взгляд, сигнал данных свободен от помех. Это гарантируется благодаря регистру-защёлке (latch), встроенному в TMDS. Но главной проблемой всё же остаётся тактовый сигнал, который портит поток данных через 10-кратное умножение ФАПЧ.

Так как частота умножается в 10 раз с помощью ФАПЧ, влияние даже небольшого искажения увеличивается. В итоге данные попадают на приёмник уже не в своём первоначальном состоянии.

Сверху показан идеальный тактовый сигнал, ниже - сигнал, где один из фронтов начал передаваться слишком рано. Благодаря ФАПЧ, это напрямую влияет на сигнал данных. В общем, каждое возмущение тактового сигнала приводит к ошибкам при передаче данных.

Когда приёмник семплирует повреждённый сигнал данных с помощью "идеального" тактового сигнала гипотетического ФАПЧ, он получает ошибочные данные (жёлтая полоса).

Как это работает на самом деле: если приёмник будет использовать повреждённый тактовый сигнал передатчика, он всё ещё сможет считать повреждённые данные (красная полоса). Именно поэтому тактовый сигнал тоже передаётся по кабелю DVI! Приёмнику требуется тот же самый (повреждённый) тактовый сигнал.

Стандарт DVI включает в себя устранение дрожания фазы (jitter management). Если оба компонента будут использовать один и тот же повреждённый тактовый сигнал, то информация может считываться из повреждённого сигнала данных без ошибок. Таким образом, совместимые с DVI устройства могут работать даже в условиях наличия низкочастотного дрожания фазы. Ошибку в тактовом сигнале тогда можно обойти.

Как мы уже объясняли выше, DVI работает оптимально, если передатчик и приёмник используют один и тот же тактовый сигнал и их архитектура одинакова. Но так бывает не всегда. Именно поэтому использование DVI может привести к появлению проблем, несмотря на сложные меры предотвращения дрожания фазы.

На иллюстрации показан оптимальный сценарий для передачи DVI. Умножение тактового сигнала в ФАПЧ (PLL) приводит к задержке. И поток данных уже не будет целостным. Но всё выправляется с помощью учёта той же самой задержки в ФАПЧ приёмника, поэтому данные принимаются корректно.

Стандарт DVI 1.0 чётко определяет задержку ФАПЧ. Такая архитектура называется несвязанной (non-coherent). Если ФАПЧ не соответствует данным спецификациям по времени задержки, то могут появиться проблемы. В индустрии сегодня ведутся горячие дискуссии по поводу того, следует ли использовать подобную несвязанную архитектуру. Причём, ряд компаний выступает за полный пересмотр стандарта.

В этом примере используется тактовый сигнал ФАПЧ вместо сигнала графического чипа. Следовательно, сигналы данных и тактовые сигналы согласованы. Однако из-за задержки в ФАПЧ приёмника данные обрабатываются некорректно, и устранение дрожания фазы уже не работает!

Теперь вам должно быть понятно, почему использование длинных кабелей может стать проблемным, даже если не учитывать внешние помехи. Длинный кабель может вносить задержку в тактовый сигнал (напомним, что сигналы данных и тактовые сигналы имеют разные частотные диапазоны), дополнительная задержка может влиять на качество приёма сигнала.

Данная статья будет полезна тем, кто задумался о приобретении нового монитора или о замене старого видеоадаптера. Разъем монитора может не подойти к имеющимся интерфейсам графического адаптера. Кроме того, от типа разъема зависит качество изображения, а каждый тип кабеля имеет свою критическую длину.

Прежде было достаточно для подключения к компьютеру монитора разъема VGA. Сегодня в повседневную жизнь приходят такие интерфейсы, как DVI, HDMI, DisplayPort. Каждый из них обладает своими преимуществами и недостатками, которые следует учитывать при апгрейде ПК. Следует знать всё про разъем монитора: типы, переходники, подключение.

1. Разъем VGA (Video Graphics Array) – аналоговый стандарт, предназначенный для мониторов с расширением 640*480. При увеличении разрешения, качество цифровой картинки ухудшается. Для получения изображения высокого качества требуются разъемы цифрового стандарта.

2. Цифровой интерфейс DVI (Digital Visual Interface) передает видеосигнал в цифровом формате и обеспечивает высокое качество цифрового изображения. Интерфейс имеет совместимость с аналоговым разъемом VGA (передает одновременно сигнал и в цифровом формате, и в аналоговом). Недорогие видеоплаты снабжены DVI-выходом с одноканальной модификацией (Single Link). В данном случае обеспечивается разрешение монитора 1920*1080. Более дорогие модели снабжены двухканальным интерфейсом (Dual Link) и могут поддерживать разрешение до 2560*1600. Для ноутбука разработан интерфейс mini-DVI.


3. Мультимедийный цифровой интерфейс с высоким разрешением HDMI (High Definition Multimedia Interface) чаще всего используется в устройствах домашнего развлечения (плоские телевизоры, blu-ray-плейеры). Разъем монитора также сохраняет высокое качество исходного сигнала. Вместе с этим интерфейсом была разработана и новая технология HDCP, защищающая контент от точного копирования, например, те же видеоматериалы.

С 2003 года (год создания) интерфейс несколько раз модифицировали, добавляя поддержку видео и аудиоформатов. Для небольших моделей техники создан миниатюризированный интерфейс. Им комплектуются многие устройства.

4. DisplayPort (DP) – новый цифровой интерфейс, предназначенный для соединения графических адаптеров с устройствами отображения. Текущая версия разрешает подключение нескольких мониторов при условии их последовательного подключения в цепочку.

На данный момент, устройств с таким портом немного, но у DP большое будущее. Его усовершенствованная модель DP++ (такое обозначение можно увидеть на разъемах ноутбуков или компьютеров) позволяет подключать мониторы с HDMI или DVI-интерфейсами.

5. USB (3.0) : подключение с помощью разъема USB стало возможным, когда появилась высокоскоростная версия интерфейса 3.0. Используя переходник DisplayLink можно подключить монитор с разъемом DVI/HDMI к USB порту ноутбука или компьютера.

Как «подогнать» разъем монитора и видеокарты?

Самый распространённый доступный по цене переходник на сегодня — DVI-I/VGA. Есть конвертеры, преобразующие выходной цифровой сигнал в аналоговый (например, DisplayPort/VGA), но такой вариант обойдется намного дороже.

Однако нужно еще кое-что учитывать при выборе переходника. Некоторые из них лишают имеющийся интерфейс некоторых преимуществ. Например, при подключении HDMI-разъема монитора или телевизора к разъему DVI будет отсутствовать звук.

Особенность версий разъема hdmi

При стыковке устройств с разными версиями интерфейсов HDMI, устройства будут выполнять функции только ранней версии. Например, при подключении 3D телевизора с поддержкой HDMI версии 1.4 к видеокарте с HDMI 1.2 все 3D-игры будут отображаться только в формате 2D.

Если сложилась такая ситуация, можно заменить драйвер на видеокарте на более новый. Используя программу 3DTV Play, можно получить возможность отображения 3D-графики на собственном телевизоре.

Какой разъем для монитора выбрать?

По данным тестирования, VGA-интерфейсы показывают самое низкое качество отображения. Для монитора с диагональю более 17 дюймов и разрешением более 1024*786 рекомендуется использовать разъемы DVI, HDMI, DisplayPort.

Как подключить монитор и ноутбук?

Чтобы подключить ноутбук к внешнему монитору, необходимо воспользоваться имеющимися разъемами. После чего можно будет, используя комбинацию кнопок «Fn + F8», переключаться между следующими режимами.

Можно использовать внешний монитор, как основной . При этом изображение будет выводиться только на внешний монитор, а на дисплее ноутбука картинка будет полностью отсутствовать (удобно для просмотра кинофильмов).

Можно использовать внешний монитор в режиме клона , т.е. одно и то же изображение будет отображаться и на экране ноутбука и на внешнем мониторе/телевизоре (удобно для проведения семинаров и презентаций).

Многоэкранный режим позволяет увеличить размер рабочего стола (растянуть), используя несколько мониторов (удобно при наборе текста и просмотре сообщений).

Максимальная длина кабеля

Длина кабеля зависит от типа подключения. При DVI-DVI соединении, максимально допустимая длина кабеля 10 м. При DVI-HDMI соединениях – не более 5 м. При соединениях с помощью разъема DisplayPort — не более 3 м. Соблюдение этих требований поможет получить максимальную скорость передачи данных. Если требуется передавать информацию на большее расстояние, придется прибегнуть к помощи усилителя сигнала.

При покупке видеокабеля следует выбирать хорошо экранированные модели. Это поможет избежать отрицательного влияния расположенных рядом электронных устройств на качество передаваемого видеосигнала. При использовании кабеля низкого качества может замедляться скорость передачи видеоданных. Что, в свою очередь, может привести к появлению на экране прерывистого изображения (наложению спектров).

Следует обратить внимание на наличие позолоченных контактов в разъеме монитора. Они противодействует появлению коррозии в местах с повышенной влажности воздуха. К тому же, такие контакты снижают сопротивление между штекером и разъемом, благодаря чему улучшается качество передачи данных.

Технический прогресс в области хайтека набирает скорость подобно истребителю-перехватчику. Еще недавно цифровая электроника ассоциировалась исключительно с громоздкими ЭВМ в вычислительных центрах, а сегодня сотовые телефоны, ноутбуки и плазменные дисплеи уже ни у кого не вызывают удивления. Правда, пути совершенствования радиоэлектронной аппаратуры иногда бывают довольно странными, и в начале XXI века в продаже появляются аудиоусилители класса Hi End, на кожухах которых, как на довоенных радиоприемниках, гордо выстраиваются радиолампы-самовары. Но это так – игрушки для богатых, а на самом деле, после того, как цены на мощные микропроцессоры упали до уровня 20 долларов за штуку, переход к цифровым методам создания, обработки, хранения и передачи видео- и аудиоинформации стал неизбежен. С точки зрения схемотехники цифровая аппаратура сложнее аналоговой, однако ее функциональные возможности гораздо шире, а некоторые из них принципиально недостижимы при аналоговой обработке сигнала.

Переход на цифровые форматы аудио и видео обусловлены их техническими и пользовательскими преимуществами по сравнению с аналоговыми.

К техническим преимуществам относят:

С точки зрения схемотехники цифровая аппаратура сложнее аналоговой, однако ее функциональные возможности гораздо шире, а некоторые из них принципиально недостижимы при аналоговой обработке сигнала

  • принципиальное исключение потери качества сигнала при передаче, перезаписи и хранении сигнала;
  • возможность точной временной синхронизации видеоматериала;
  • более совершенные системы управления и контроля качества сигнала;
  • упрощение технологии получения, обработки, хранения и передачи качественного сигнала;
  • расширение творческих возможностей персонала телестудий;
  • возможность шифрования видеоданных (использование криптографии).

К пользовательским свойствам цифрового формата относят:

  • возможность получения высококачественной, лишенной помех и шумов картинки с многоканальным стереозвуком;
  • широкие сервисные возможности цифровой аппаратуры.

Понятно, что аналоговые интерфейсы для работы с цифровым сигналом не годятся или подходят плохо, поэтому для него были созданы специальные, цифровые интерфейсы.

К ним относятся последовательный цифровой интерфейс SDI/SDTI, используемый в профессиональной и студийной аппаратуре, а также цифровые видеоинтерфейсы DVI и HDMI .

Последние два интерфейса рассматриваются ниже. Интерфейс HDMI является развитием интерфейса DVI, в нем используются те же базовые технологии, поэтому они и рассматриваются в переделах одной брошюры.

ЦИФРОВОЙ ВИДЕОИНТЕРФЕЙС DVI

Проблема ухудшения характеристик качества сигнала при многократном аналого-цифровом и цифро-аналоговом преобразовании была решена с появлением нового стандарта DVI, который сейчас можно уверенно рассматривать в качестве общепринятого. Группа, разработавшая стандарт - Digital Display Working Group (DDWG) - была создана по инициативе Intel, в нее вошли Compaq, Fujitsu, Hewlett-Packard, IBM, NEC и Silicon Image. Спецификация DVI была представлена в апреле 1999 г, тогда же были продемонстрированы и рабочие решения, использующие стандарт – плазменные мониторы Fujitsu и Phillips, ЖК-мониторы IBM и Compaq и прочие продукты.

Переход от композитного и S-Video к компонентному и RGB-трактам позволил резко увеличить качество изображения, однако лишние преобразования «аналог-цифра-аналог» ощутимо ухудшали качество картинки

Создатели стандарта DVI рассчитывали, что область его применения окажется гораздо шире, чем цифровое соединение компьютера с монитором. В конце 90-х годов ХХ века продолжалось бурное развитие видеотехнологий. В обиход прочно вошли полностью цифровые DLP-проекторы, а LCD и CRT мониторы, если и оставались аналоговыми по принципу формирования изображения, имели цифровые схемы обработки сигнала. В цифровой форме осуществлялось масштабирование изображения и преобразование развертки, необходимое для корректного преобразования количества строк, пикселей и полей. Функции регулировки цветности, яркости, контрастности и других параметров видео также были реализованы цифровыми методами. После того, как фирма Fujitsu начала продавать другим производителям лицензии на плазменные технологии, стало ясно, что выход на рынок еще одного вида высококачественного цифрового дисплея - вопрос недалекого будущего.

В практическую плоскость перешло внедрение телевидения высокой четкости. Размеры экранов росли, увеличивалось их разрешение. Не было только одного - отвечающего текущим и перспективным запросам рынка цифрового видеоинтерфейса. Переход от композитного и S-Video к компонентному и RGB-трактам позволил резко увеличить качество изображения, однако лишние преобразования «аналог-цифра-аналог» ощутимо ухудшали качество картинки, что было особенно обидно из-за абсолютной ненужности АЦП и ЦАП в тракте, состоящем из цифрового источника (DVD, компьютер), цифрового дисплея и цифрового же процессора между ними. Получалось, что АЦП и ЦАП работали только на «провода» между источником и монитором.

Необходимость создания цифрового интерфейса, отвечающего запросам HDTV и имеющего солидный запас на перспективу, стала совершенно очевидной.

Интерфейс DVI - Digital Visual Interface - можно с определенными допусками назвать цифровым RGB-интерфейсом. В одноканальной модификации формата Single Link DVI имеется четыре канала передачи данных: три из них предназначены для передачи информации об основных цветах: синем, зеленом и красном, а четвертый передает сигнал тактовой частоты «Clock». При этом достигается максимальная скорость потока данных, равная 1,65 Гбит/с, или 165 мегапикселей в секунду при 10-битном кодировании (это дает эффективные 8 бит данных), что соответствует разрешению 1600 х 1200 пикселей (UXGA) при частоте обновления полей 60 Гц (или 1920 х 1080 и даже 1920 х 1200). На сегодняшний день это с запасом покрывает потребности современных форматов HDTV.

Еще большую пропускную способность имеет модификация интерфейса Dual Link DVI. Здесь все то же самое, но в двойном размере (кроме сигнала тактовой частоты, которую дважды передавать не нужно). Dual Link DVI способен передавать сигналы QXGA (2048 х 1536 пикселей) при частоте смены кадров 60 Гц.

DVI передает разрешения до 1600 х 1200 (UXGA) при 60 Гц (или 1920 х 1080 и даже 1920 х 1200). Это с запасом покрывает потребности HDTV

Несмотря на явную избыточность Dual Link DVI в отношении современных дисплеев, поддерживающие этот интерфейс устройства производятся (например, большие дисплеи для рабочих станций).

Благодаря технологии DVI появилась возможность удаления аналоговой части с плат видеоадаптеров и перенос её в монитор, что должно сказаться на повышении качества изображения гораздо сильнее, чем устранение влияния помех в соединительном кабеле видеокарта-монитор. Поскольку информация об изображении передается от видеокарты к монитору в цифровом виде, влияние внешних наводок значительно снижается.

РАЗНОВИДНОСТИ DVI

Существуют ещё две разновидности интерфейса DVI: DVI-D и DVI-I, различие между которыми заключается в том, что для обеспечения более широкой совместимости аппаратуры разных поколений в разъеме DVI, помимо трех рядов «цифровых» контактов, могут быть предусмотрены еще и аналоговые, на которые подается обычный аналоговый RGBHV-сигнал (то же, что VGA, на рис. 1 - контакты С1 – С5). Таким образом, вариант интерфейса DVI, включающий аналоговую и цифровую части, называют DVI-I (Integrated), т.е. совмещенный. Таким образом, всего можно встретить 4 разновидности интерфейса:

  • DVI-I Dual Link (цифровой + аналоговый, до 2048 х 1536)
  • DVI-I Single Link (цифровой + аналоговый, до 1920 х 1200)
  • DVI-D Dual Link (цифровой, до 2048 х 1536)
  • DVI-D Single Link (цифровой, до 1920 х 1200)

КАБЕЛЬ DVI

Версии Single Link могут не иметь контактов 4, 5, 12, 13, 20, 21 на разъеме. Версии DVI-D могут не иметь контактов C1, C2, C3, C4, С5 на разъеме.

Разводка разъема DVI (для «полного» интерфейса Dual Link DVI-I) показана на рис. 1, а назначение контактов сведено в таблицу 1.

Таблица 1. Распайка разъема DVI-I Dual Link

Конт. Описание Конт. Описание
1 Данные T.M.D.S 2– 16
2 Данные T.M.D.S 2+ 17 Данные T.M.D.S 0–
3 Экран для данных T.M.D.S 2 и 4 18 Данные T.M.D.S 0+
4 Данные T.M.D.S 4–* 19 Экран для данных T.M.D.S 0 и 5
5 Данные T.M.D.S 4+* 20 Данные T.M.D.S 5–*
6 Такты DDC 21 Данные T.M.D.S 5+*
7 Данные DDC 22 Экран для тактов T.M.D.S
8 Аналоговая кадровая синхр.** 23 Такты T.M.D.S+
9 Данные T.M.D.S 1– 24 Такты T.M.D.S–
10 Данные T.M.D.S 1+ 25 Аналоговый канал R**
11 Экран для данных T.M.D.S 1 и 3 26 Аналоговый канал G**
12 Данные T.M.D.S 3–* 27 Аналоговый канал В**
13 Данные T.M.D.S 3+* 28 Аналоговая строчная синхр.**
14 Питание +5 В 29 Аналоговая земля**
15 Земля 30

* только для Dual Link; ** только для DVI-I

Рис. 1. Разъемы DVI-D и DVI-I

ВНУТРЕННОСТИ: ПЕРЕДАЧА ВИДЕОДАННЫХ (TMDS)

Высокие скоростные характеристики интерфейса DVI достигнуты за счет использования специально разработанного для него алгоритма кодирования сигналов, который называется Transition Minimized Differential Signaling (T.M.D.S) – дифференциальная передача сигналов с минимизацией перепадов уровней.


Рис. 2. Линия связи TMDS

Дифференциальный (или балансный, симметричный) способ передачи, когда по каждому проводнику витой пары проходит один и тот же прямой и инвертированный сигнал, обеспечивает эффективную защиту данных от синфазных помех.


Рис. 3. Балансная линия связи с дифференциальным приёмником


Рис. 4. Балансная линия связи подавляет помехи

На передающей стороне интерфейса DVI находится передатчик T.M.D.S. в котором производится преобразование оцифрованного RGB-сигнала и формирование последовательного потока данных в каждом из каналов. На приемной стороне, наоборот, происходит полное восстановление цифровых потоков по каналам R, G, B, а также сигнала Clock.

Формат передачи всегда один: цветовое пространство RGB, глубина цвета 24 бита (по 8 бит на компоненту). Для высоких разрешений поддерживаются частоты кадров до 60 Гц (прогрессивной развертки).

При восстановлении используется автоматическая компенсация потерь в кабеле и перетактирование (реклокинг, устранение джиттера, т.е. дрожания фазы цифрового сигнала).



Рис. 5. Сигнал до и после восстановления

Восстановление эффективно только если деградация сигнала не превышает некоторого порогового значения. В этом случае цифровой сигнал восстанавливается практически полностью, без потерь и ошибок. Однако ситуации стоит лишь немного ухудшиться (например, берем кабель немного большей длины) - и сигнал восстановить не удается, а картинка испещряется помехами, «разваливается», а то и вовсе пропадает. Это явление называется «эффектом обрыва» и характерно именно для цифровых сигналов.


Рис. 6. «Эффект обрыва»

В результате, при использовании кабелей разумной длины и репитеров (приёмников-передатчиков сигнала с его промежуточным восстановлением) можно транслировать цифровой сигнал на практически неограниченные расстояния - без потерь!

Рис. 7. Использование репитеров

Чем выше разрешение сигнала (а, значит, и скорость передачи данных в каналах TMDS), тем больше потери в кабеле и (при прочих равных) короче может быть используемый кабель. Стандарт DVI не оговаривает возможную длину кабеля и разрешение сигнала, при котором такая длина будет работать. Реальные качественные кабели DVI обычно хорошо работают при длинах и разрешениях, не превышающих показанные ниже на графике (приведен для интерфейса версии Single Link):


Рис. 8. Разрешения против длин кабелей

В некоторых случаях будут работать и более длинные кабели, однако это в каждом конкретном сочетании аппаратуры требует экспериментального подтверждения.

Чтобы преодолеть ограничения на длину кабеля, можно:

  • приобрести электрические кабели DVI сверхвысокого качества (и цены). В некоторых случаях производители таких кабелей гарантируют их работу с максимальными разрешениями при длине до 15 метров
  • использовать схему с репитерами (см. рис. 7)
  • использовать волоконно-оптические удлинители или иные специальные решения. Обычно это дешевле репитеров (при числе последних более 2), удлинители работают на расстояниях от десятков до сотен метров.


Рис. 9. Интегрированный оптоволоконный кабель (слева, длина до 100 м), передатчик и приемник для использования с отдельным оптическим кабелем (справа, длина кабеля до 500 м)

ВНУТРЕННОСТИ: СЛУЖЕБНЫЙ КАНАЛ (DDC)

Если служебный канал DDC не работает, видеоданные в каналах TMDS могут блокироваться

Интерфейсы DVI-D и DVI-I, помимо описанных выше цифровых каналов, содержат еще один, предназначенный для обмена информацией между оснащенным видеопроцессором источником (например, PC с видеокартой) и дисплеем. Канал DDC (Display Data Channel) предназначен для передачи подробного «досье» дисплея процессору, который, ознакомившись с ним, выдает оптимальный для данного дисплея сигнал с нужным разрешением и экранными пропорциями. Такое досье, называемое EDID (Extended Display Identification Data, или подробные идентификационные данные дисплея), представляет собой блок данных со следующими разделами: марка изготовителя, идентификационный номер модели, серийный номер, дата выпуска, размер экрана, поддерживаемые разрешения и собственное разрешение экрана.

При запуске DVI-совместимого источника активизируется процесс HPD (Hot Plug Detect, или опознание активного соединения). После этого источник производит считывание блока данных EDID. В случае если монитор отказывается выдать информацию о себе, канал T.M.D.S блокируется.

При использовании аппаратуры, соответствующей стандарту и стандартных кабелей, для простой схемы включения (источник–кабель–монитор) такая схема нормально работает. Однако в более сложных случаях канал DDC может и не работать - например, если между выходом и дисплеем установлены коммутаторы, усилители-распределители и др. элементы сложных AV-систем. В этом случае возникает проблема: как заставить работать выход, например, видеокарты ноутбука, при отсутствии служебного канала.


Рис. 10. Устройство - эмулятор EDID и его применение
(Нажмите на фото для увеличения)

«Обмануть» видеовыход можно с помощью специального устройства. Такой прибор хранит блок данных EDID в своей внутренней памяти и выдаёт его оттуда по запросу видеокарты. При этом видеоданные проходят через прибор «прозрачно». Если эмулятор предварительно «обучить» (прочитав реальный EDID из реального дисплея), источник сигнала будет «думать», что постоянно подключён к дисплею, и выдавать данные на выход.

Во многие коммутаторы и усилители-распределители для сигналов DVI и HDMI подобные эмуляторы уже встроены, что облегчает труд установщика. Заметим, что наличие эмулятора ни в коем случае не обеспечивает работу системы шифрования видеоданных HDCP, для которой наличие «живого» канала DDC обязательно.

ВНУТРЕННОСТИ: ШИФРОВАНИЕ ДАННЫХ HDCP

Разработанная фирмой Intel криптографическая система HDCP (Highbandwidth Digital Content Protection) - это метод защиты цифровых данных высокого разрешения. Она обеспечивает возможность в зависимости от конкретного случая установить разные уровни защиты, благодаря чему она не ограничивает свободу обращения с видео данными в пределах одобренных действующим законодательством рамок. Так, например, HDCP не обеспечивает защиту от копирования и искусственно не ухудшает качества копий. Под жесткий запрет подпадают следующие действия: копирование программ со снятой защитой, получение незащищенного цифрового потока высокого разрешения. Разрешены повторители и разветвители сигнала, но при этом они должны «обменяться паролями» друг с другом и получить взаимное одобрение, что возможно только в том случае, если все устройства обладают HDCP-совместимостью.

На диске Blu-Ray или в DVB-потоке записана специальная метка, при наличии которой плейер или ресивер обязан включить шифрование данных на своём цифровом выходе

Заметим, что HDCP не привязана, например, к шифрованию данных на Blu-Ray диске или потока в DVB-приёмнике. Это иные технологии. На самом диске или в DVB-потоке просто записана специальная метка, при наличии которой аппарат (плейер или ресивер) обязан включить шифрование данных на своём цифровом выходе.

Система HDCP может работать как с интерфесом DVI, так и с HDMI. Правда, для (в основном) компьютерного интерфейса DVI система HDCP применяется крайне редко, тогда как для потребительского интерфейса HDMI кодирование HDCP используется повсеместно (и для большинства видеопрограмм - в обязательном порядке).

HDCP защищает права потребителя, ограждая его от потока низкосортной
видеопродукции

Необходимо особо отметить, что HDCP работает не только на правообладателей киноматериалов, но и защищает права потребителя, ограждая его от потока низкосортной видеопродукции (например, по- лученной через Интернет), качество которой несовместимо с современными форматами телевидения высокого разрешения.

Работает HDCP по сложной схеме, предусматривающей прежде всего наличие своих «секретных» кодовых комбинаций в каждом передатчике и приемнике DVI/HDMI. В единой системе допускается наличие до 127 пар передатчиков и приемников и до 7 уровней разветвления (или ретрансляции). Для того чтобы канал DVI/HDMI активизировался, должен успешно пройти процесс взаимной аутентификации каждой пары передатчиков и приемников. Для этой задачи используется всё тот же служебный канал DDC.

При работе HDCP аналоговые выходы могут выдавать картинку высокого разрешения, либо низкого разрешения, либо вовсе не выдавать картинку - на усмотрение производителя

Первый этап процесса аутентификации – обмен кодовыми комбинациями, которые «зашиты» в микросхемы оборудования и недоступны пользователю. Кодовые комбинации должны обладать правдоподобностью, для проверки которой производится вычисление математической суммы R0. В передатчике вырабатывается псевдослучайная последовательность AN, которая вместе с т. н. «вектором выбора кода» (KSV) отсылается на приемник. Аналогично с приемника поступает подобное сообщение на передатчик. В случае положительного результата проверки KSV (в их структуре, помимо всего прочего, обязательно должны присутствовать 20 нулей и 20 единиц) на обеих сторонах запускаются генераторы кодов, вырабатывающие 24-разрядные шифровальные коды, соответствующие определенным значениям «секретного» параметра Ks. Синтезированные в передатчике и приемнике значения R0 и Ks сравниваются.

Значения KSV являются индивидуальными для каждого отдельного устройства. Существует также «черный список» взломанных кодов, который хранится в памяти устройства и пополняется при проигрывании новых BluRay-релизов (один из способов). При совпадении индивидуальных данных конкретного аппарата с данными из этого списка процесс инициализации немедленно блокируется. Таким образом, единожды замеченный в попытке обойти запреты DVD/BluRay-плейер станет персоной нон-грата в любой системе, при условии, что кто-то данную попытку заметит и сообщит куда следует.

Весь процесс «запуска» работы интерфейса DVI/HDMI (считывание EDID, настройка выхода) и cистемы HDCP (аутентификация) может занимать до нескольких секунд. В это время изображения на дисплее нет.

Когда на цифровом выходе плейера или спутникового ресивера идет видеопоток с кодированием HDCP, его аналоговые выходы могут выдавать картинку высокого разрешения, либо низкого разрешения, либо вовсе не выдавать картинку - на усмотрение производителя аппарата. К сожалению, в документации описание такого поведения можно найти крайне редко.

Концептуальная сложность всей системы (DVI/HDMI, DDC/EDID, HDCP) оказывается на порядки выше, чем всех ранее использовавшихся аналоговых интерфейсов. Хотя при массовом производстве это практически не приводит к удорожанию аппаратуры (и теоретически даже должно её удешевить), проблемы совместимости и даже простой работоспособности аппаратуры, особенно от разных производителей, теперь оказываются крайне актуальными. Особенности «прошивок» аппаратуры и ошибки в реализации интерфейсов способны свести на нет все преимущества самой дорогой и совершенной современной техники.

Перед приобретением комплекта аппаратуры с интерфейсом DVI/HDMI и поддержкой HDCP обязательно включите её и проверьте во всех режимах, в том числе и при воспроизведении контента с включенной защитой HDCP

Рекомендуем перед приобретением аппаратуры с интерфейсом DVI/HDMI и поддержкой HDCP обязательно включить её (весь комплекс - источники сигнала, промежуточные коммутаторы, распеределители, AV-ресиверы, дисплеи и все соединительные кабели) и проверить во всех режимах, в том числе и при воспроизведении контента с включенной защитой HDCP.

БУДУЩЕЕ DVI И HDMI

По оптимистичным прогнозам Intel, стандарт DVI и HDMI будет актуален как минимум следующие десять лет.

Вытеснение старых интерфейсов набирает обороты. В не столь уж отдаленном будущем дело, скорее всего, дойдет до отмирания аналоговой части видеоаппаратуры. Для интерфейса HDMI, идущего на смену DVI, это уже свершилось (аналоговой части там нет).

ИНТЕРФЕЙС HDMI

Развитием интерфейса DVI является мультимедийный интерфейс высокой четкости HDMI (High Definition Multimedia Interface). Видеочасть HDMI, а также служебный канал DDC полностью совместимы с DVI, но вид у него совершенно другой, т.к. использован другой разъём. HDMI – это более совершенный интерфейс, чем DVI, в первую очередь, благодаря возможности передачи многоканального звука. Дополнительно HDMI снабжён управляющим интерфейсом CEC (его нет в DVI).

HDMI – это более совершенный интерфейс, чем DVI, в первую очередь, благодаря возможности передачи многоканального звука

Так же, как и DVI, интерфейс HDMI может быть одноканальным (Single Link) и двухканальным (Dual Link) (для этих версий используются разные разъёмы). Линии связи TMDS и служебный канал DDC работают в точности так же, как и в DVI.

Пропускная способность HDMI (как и DVI) достигает 5 Гбит/с. Этого достаточно для видеосигнала 1080p и двух каналов несжатого цифрового звука в PCM до 48 кГц либо 5.1 каналов в Dolby Digital или DTS. Передача аудио осуществляется в смеси с видео, используются те же линии TMDS (никаких дополнительных проводников для аудио в кабеле нет).


Рис. 11. Сравнение кабельных вилок HDMI и DVI (справа)

Разъем HDMI более компактный, однако лишен фиксаторов, и (при использовании сколько-нибудь длинных и тяжёлых кабелей) склонен выпадать из своей розетки.

КАБЕЛЬ HDMI

Последняя на момент выпуска брошюры версия стандарта HDMI 1.3a описывает 3 разновидности разъёма:

  • Стандартный Single Link (Type A)
  • Стандартный Dual Link (Type B)
  • Миниатюрный Single Link (для компактных устройств) (Type C)

Самый распространённый тип - стандартный Single Link (Type A). Другие типы разъёмов встречаются пока редко. Разводка такого разъема показана на рис. 12, а назначение контактов сведено в таблицу 2.

Таблица 2. Распайка разъема HDMI (Type A, Single Link)

Конт. Описание Конт. Описание
1 Данные T.M.D.S 2+ 2 Экран для данных T.M.D.S 2
3 Данные T.M.D.S 2– 4 Данные T.M.D.S 1+
5 Экран для данных T.M.D.S 1 6 Данные T.M.D.S 1–
7 Данные T.M.D.S 0+ 8 Экран для данных T.M.D.S 0
9 Данные T.M.D.S 0– 10 Такты T.M.D.S+
11 Экран для тактов T.M.D.S 12 Такты T.M.D.S–
13 CEC 14 (не используется)
15 Такты DDC (SCL) 16 Данные DDC (SDA)
17 Земля (для DDC/CEC) 18 Питание +5 В
19 Датчик «горячего» подключения


Рис. 12. Кабельная часть разъёма HDMI Type A

ВНУТРЕННОСТИ: TMDS, DDC, HDCP

Технологии передачи видеоданных (TMDS), служебнный канал (DDC), cистема шифрования (HDCP) аналогичны описанным для интерфейса DVI.

Длины кабелей и максимальное разрешения оказываются аналогичными таковым для DVI - см. рис. 8. Для преодоления ограничений по длине можно использовать те же методы что и для DVI (рис. 13).


Рис. 13. Оптический кабель для удлинения HDMI (Type A) до 100 метров

В дополнение ко всем видеорежимам DVI интерфейс HDMI поддерживает:

  • с версии 1.2 - цветовое пространство YUV (т.е. Y/Pb/Pr)
  • с версии 1.3 - цветовое пространство xvYCC (IEC 61966-2-4, имеет в 1,8 раз более широкий цветовой охват)
  • с версии 1.3 - удвоенную скорость передачи данных (х2) по TMDS. Режим требует применения специальных кабелей («категории 2») с улучшенными параметрами. Кабели для всех предыдущих версий при этом попадают в «категорию 1». Кроме режима х2 поддерживаются режимы х1,25 и х1,5.

При использовании режима удвоения скорости передачи, начиная с версии 1.3 возможно следующее:

  • увеличить глубину цвета вплоть до 48 бит
  • увеличить кадровую частоту для стандартных максимальных разрешений до 120 Гц
  • увеличить максимальное разрешение

ВНУТРЕННОСТИ: ПЕРЕДАЧА АУДИО

Аудиоданные передаются вместе с видео по тем же линиям связи TMDS. Аудиопоток «нарезается» на пакеты и передается в неиспользуемых участках видео (во время интервалов гашения по горизонтали и вертикали).


Рис. 14. Аудиопоток передается пакетами в интервалах гашения видео

  • с версии 1.0 поддерживается PCM stereo до 48k, Dolby Digital, DTS
  • c версии 1.1 также поддерживается DVD-audio
  • c версии 1.2 также поддерживается SACD
  • c версии 1.3 также поддерживается Dolby®TrueHD и DTS-HD Master Audio™ (с битрейтами до 8 Мбит/с)

ВНУТРЕННОСТИ: КАНАЛ УПРАВЛЕНИЯ (СЕС)

Многие производители электроники объявили о поддержке канала управления СЕС

Дополнительная линия связи СЕС (Consumer Electronics Control) может использоваться для управления потребительской электроникой. Благодаря ей все соединенные по интерфейсу HDMI приборы (до 10 штук) объединяются в управляющую сеть. Предусмотрены типовые команды управления (Пуск, Стоп, Перемотка, команды для меню, тюнеров, ТВ и т.д.), которые приборы могут передавать друг другу. Это позволяет управлять одним аппаратом (скажем, проигрывателем Blu-Ray) с пульта другого (скажем, телевизора), автоматизировать некоторые процессы и т.д. С выходом версии HDMI 1.3 многие производители электроники объявили о поддержке данного канала управления.

СОВМЕСТИМОСТЬ ИНТЕРФЕЙСОВ

Стандарт HDMI оговаривает полную совместимость всех версий интерфейсов (сверху-вниз и снизу-вверх):

  • DVI (версии 1.0) должен быть совместим с HDMI (любой версии). Разумеется, поддержка аудио при этом отсутствует. Режимы видео будут ограничены режимами, оговорёнными для DVI. Подключение можно производить переходным кабелем (или через адаптер-переходник)
  • HDMI (любой версии) должен быть совместим с HDMI (любой версии). При этом возможности такой системы определяются возможностями «младшего» её компонента.
  • Допустимы любые сочетания версий источника сигнала, дисплея и промежуточных приборов (репитеров, коммутаторов и т.д.), с той же оговоркой по возможностям.


Рис. 15. Кабель-переходник и адаптер DVI-HDMI

К сожалению, такую великолепную совместимость демонстрируют далеко не все имеющиеся на рынке устройства. Например, некоторые широкоэкранные дисплеи для домашних кинотеатров не поддерживают цветовое пространство RGB (необходимое для DVI и HDMI 1.0) и понимают лишь ограниченное количество видеорежимов (против минимально требуемого стандартом). При этом на таких дисплеях красуется логотип «HDMI» и провозглашается поддержка версии 1.3.

Заметим также, что расширенные возможности версии HDMI 1.3а, в основном, являются необязательными, и поэтому «соответствовать» требованиям этой новейшей версии стандарта оказывается легко - достаточно выполнить лишь минимальные требования (фактически - требования к версии 1.0). Поэтому при покупке аппаратуры обязательно убедитесь, что она действительно имеет те расширения, которые Вам нужны - цифра 1.3а в спецификации ещё ни о чём, к сожалению, не говорит...

Ссылки в Интернете:

Стандарт DVI http://www.ddwg.org
Стандарт HDMI

На выбор видеокарты также может повлиять и имеющийся или предполагаемый к приобретению монитор. Или даже мониторы (во множественном числе). Так, для современных LCD-мониторов с цифровыми входами очень желательно, чтобы на видеокарте был разъём DVI, HDMI или DisplayPort. К счастью, на всех современных решениях сейчас есть такие порты, а зачастую и все вместе. Ещё одна тонкость заключается в том, что если требуется разрешение выше 1920×1200 по цифровому выходу DVI, то обязательно нужно подключать видеокарту к монитору при помощи разъёма и кабеля с поддержкой Dual-Link DVI. Впрочем, сейчас с этим проблем уже нет. Рассмотрим основные разъёмы, использующиеся для подключения устройств отображения информации.

Аналоговый D-Sub разъём (также известен как VGA -выход или DB-15F )

Это давно известный всем и привычный 15-контактный разъём для подключения аналоговых мониторов. Сокращение VGA расшифровывается как video graphics array (массив пикселей) или video graphics adapter (видеоадаптер). Разъём предназначен для вывода аналогового сигнала, на качество которого может влиять множество разных факторов, таких, как качество RAMDAC и аналоговых цепей, поэтому качество получаемой картинки может отличаться на разных видеокартах. Кроме того, в современных видеокартах качеству аналогового выхода уделяется меньше внимания, и для получения чёткой картинки на высоких разрешениях лучше использовать цифровое подключение.

Разъёмы D-Sub были фактически единственным стандартом до времени широкого распространения LCD-мониторов. Такие выходы и сейчас часто используются для подключения LCD-мониторов, но лишь бюджетных моделей, которые плохо подходят для игр. Для подключения современных мониторов и проекторов рекомендуется использовать цифровые интерфейсы, одним из наиболее распространенных из которых является DVI.

Разъём DVI (вариации: DVI-I и DVI-D )

DVI — это стандартный интерфейс, чаще всего использующийся для вывода цифрового видеосигнала на ЖК-мониторы, за исключением самых дешевых. На фотографии показана довольно старая видеокарта с тремя разъёмами: D-Sub, S-Video и DVI. Существует три типа DVI-разъёмов: DVI-D (цифровой), DVI-A (аналоговый) и DVI-I (integrated — комбинированный или универсальный):

DVI-D — исключительно цифровое подключение, позволяющее избежать потерь в качестве из-за двойной конвертации цифрового сигнала в аналоговый и из аналогового в цифровой. Этот тип подключения предоставляет максимально качественную картинку, он выводит сигнал только в цифровом виде, к нему могут быть подключены цифровые LCD-мониторы с DVI-входами или профессиональные ЭЛТ-мониторы со встроенным RAMDAC и входом DVI (весьма редкие экземпляры, особенно сейчас). От DVI-I этот разъём отличается физическим отсутствием части контактов, и переходник DVI-to-D-Sub, о котором речь пойдет далее, в него не воткнуть. Чаще всего этот тип DVI применяется в системных платах с интегрированным видеоядром, на видеокартах он встречается реже.

DVI-A — это довольно редкий тип аналогового подключения по DVI, предназначенного для вывода аналогового изображения на ЭЛТ-приемники. В этом случае сигнал ухудшается из-за двойного цифрово-аналогового и аналогово-цифрового преобразования, его качество соответствует качеству стандартного VGA-подключения. В природе почти не встречается.

DVI-I — это комбинация двух вышеописанных вариантов, способная на передачу как аналогового сигнала, так и цифрового. Этот тип применяется в видеоплатах наиболее часто, он универсален и при помощи специальных переходников, идущих в комплекте поставки большинства видеокарт, к нему можно подключить также и обычный аналоговый ЭЛТ-монитор со входом DB-15F. Вот как выглядят эти переходники:

Во всех современных видеокартах есть хотя бы один DVI-выход, а то и два универсальных разъёма DVI-I. D-Sub чаще всего отсутствуют (но их можно подключать при помощи переходников, см. выше), кроме, опять же, бюджетных моделей. Для передачи цифровых данных используется или одноканальное решение DVI Single-Link, или двухканальное — Dual-Link. Формат передачи Single-Link использует один TMDS-передатчик (165 МГц), а Dual-Link — два, он удваивает пропускную способность и позволяет получать разрешения экрана выше, чем 1920×1080 и 1920×1200 на 60 Гц, поддерживая режимы очень высокого разрешения, вроде 2560×1600. Поэтому для самых крупных LCD-мониторов с большим разрешением, таких как 30-дюймовые модели, а также мониторов, предназначенных для вывода стереокартинки, обязательно будет нужна видеокарта с двухканальным выходом DVI Dual-Link или HDMI версии 1.3.

Разъём HDMI

В последнее время широкое распространение получил новый бытовой интерфейс — High Definition Multimedia Interface. Этот стандарт обеспечивает одновременную передачу визуальной и звуковой информации по одному кабелю, он разработан для телевидения и кино, но и пользователи ПК могут использовать его для вывода видеоданных при помощи HDMI-разъёма.

На фото слева — HDMI, справа — DVI-I. HDMI-выходы на видеокартах сейчас встречаются уже довольно часто, и таких моделей всё больше, особенно в случае видеокарт, предназначенных для создания медиацентров. Просмотр видеоданных высокого разрешения на компьютере требует видеокарты и монитора, поддерживающих систему защиты содержимого HDCP, и соединенных кабелем HDMI или DVI. Видеокарты не обязательно должны нести разъём HDMI на борту, в остальных случаях подключение HDMI-кабеля осуществляется и через переходник на DVI:

HDMI — это очередная попытка стандартизации универсального подключения для цифровых аудио- и видеоприложений. Оно сразу же получило мощную поддержку со стороны гигантов электронной индустрии (в группу компаний, занимающихся разработкой стандарта, входят такие компании, как Sony, Toshiba, Hitachi, Panasonic, Thomson, Philips и Silicon Image), и большинство современных устройств вывода высокого разрешения имеет хотя бы один такой разъём. HDMI позволяет передавать защищенные от копирования звук и изображение в цифровом формате по одному кабелю, стандарт первой версии основывается на пропускной способности 5 Гбит/с, а HDMI 1.3 расширил этот предел до 10,2 Гбит/с.

HDMI 1.3 — это обновленная спецификация стандарта с увеличенной пропускной способностью интерфейса, увеличенной частотой синхронизации до 340 МГц, что позволяет подключать дисплеи высокого разрешения, поддерживающие большее количество цветов (форматы с глубиной цвета вплоть до 48 бит). Новой версией спецификации определяется и поддержка новых стандартов Dolby для передачи сжатого звука без потерь в качестве. Кроме этого, появились и другие нововведения, в спецификации 1.3 был описан новый разъём mini-HDMI, меньший по размеру по сравнению с оригинальным. Такие разъёмы также используются на видеокартах.

HDMI 1.4b — это последняя новая версия данного стандарта, вышедшая не так давно. В HDMI 1.4 появились следующие основные нововведения: поддержка формата стереоотображения (также называемого «3D») с поочередной передачей кадров и активными очками для просмотра, поддержка Fast Ethernet-соединения HDMI Ethernet Channel для передачи данных, реверсивный аудиоканал, позволяющий передавать цифровой звук в обратном направлении, поддержка форматов разрешения 3840×2160 до 30 Гц и 4096×2160 до 24 Гц, поддержка новых цветовых пространств и самый маленький разъём micro-HDMI.

В HDMI 1.4a поддержка стереоотображения была значительно улучшена, появились новые режимы Side-by-Side и Top-and-Bottom в дополнение к режимам спецификации 1.4. И наконец, совсем свежее обновление стандарта HDMI 1.4b произошло буквально несколько недель назад, и нововведения этой версии пока неизвестны широкой публике, да и устройств с его поддержкой пока что на рынке нет.

Собственно, наличие именно разъёма HDMI на видеокарте необязательно, во многих случаях его может заменить переходник с DVI на HDMI. Он несложен и поэтому прилагается в комплекте большинства современных видеокарт. Мало того, современные GPU имеют встроенный аудиочип, необходимый для поддержки передачи звука по HDMI. На всех современных видеокартах AMD и NVIDIA нет необходимости во внешнем аудиорешении и соответствующих соединительных кабелях, и передавать аудиосигнал с внешней звуковой карты не нужно.

Передача видео- и аудиосигнала по одному HDMI-разъёму востребована прежде всего на картах среднего и низшего уровней, которые устанавливают в маленькие и тихие баребоны, используемые в качестве медиацентров, хотя и в игровых решениях HDMI применяется часто, во многом из-за распространения бытовой техники с такими разъёмами.

Разъём

Постепенно, в дополнение к распространенным видеоинтерфейсам DVI и HDMI, на рынке появляются решения с интерфейсом DisplayPort. Single-Link DVI передаёт видеосигнал с разрешением до 1920×1080 пикселей, частотой 60 Гц и 8 бит на компоненту цвета, Dual-Link позволяет передавать 2560×1600 на частоте 60 Гц, но уже 3840×2400 пикселей при тех же условиях для Dual-Link DVI недоступны. У HDMI почти те же ограничения, версия 1.3 поддерживает передачу сигнала с разрешением до 2560×1600 точек с частотой 60 Гц и 8 бит на компоненту цвета (на более низких разрешениях — и 16 бит). Хотя максимальные возможности у DisplayPort немногим выше, чем у Dual-Link DVI, лишь 2560×2048 пикселей при 60 Гц и 8 бит на цветовой канал, но у него есть поддержка 10-битного цвета на канал при разрешении 2560×1600, а также 12 бит для формата 1080p.

Первая версия цифрового видеоинтерфейса DisplayPort была принята VESA (Video Electronics Standards Association) весной 2006 года. Она определяет новый универсальный цифровой интерфейс, не подлежащий лицензированию и не облагаемый выплатами, предназначенный для соединения компьютеров и мониторов, а также другой мультимедийной техники. В группу VESA DisplayPort, продвигающую стандарт, входят крупные производители электроники: AMD, NVIDIA, Dell, HP, Intel, Lenovo, Molex, Philips, Samsung.

Основным соперником DisplayPort является разъём HDMI с поддержкой защиты от записи HDCP, хотя он предназначен скорее для соединения бытовых цифровых устройств, вроде плееров и HDTV-панелей. Ещё одним конкурентом раньше можно было назвать Unified Display Interface — менее дорогую альтернативу разъёмам HDMI и DVI, но основной её разработчик, компания Intel, отказалась от продвижения стандарта в пользу DisplayPort.

Отсутствие лицензионных выплат важно для производителей, ведь за использование в своей продукции интерфейса HDMI они обязаны выплачивать лицензионные сборы организации HDMI Licensing, которая затем делит средства между держателями прав на стандарт: Panasonic, Philips, Hitachi, Silicon Image, Sony, Thomson и Toshiba. Отказ от HDMI в пользу аналогичного «бесплатного» универсального интерфейса сэкономит производителям видеокарт и мониторов приличные средства — понятно, почему им DisplayPort понравился.

Технически, разъём DisplayPort поддерживает до четырёх линий передачи данных, по каждой из которых можно передавать 1,3, 2,2 или 4,3 гигабит/с, всего до 17,28 гигабит/с. Поддерживаются режимы с глубиной цвета от 6 до 16 бит на цветовой канал. Дополнительный двунаправленный канал, предназначенный для передачи команд и управляющей информации, работает на скорости 1 мегабит/с или 720 мегабит/с и используется для обслуживания работы основного канала, а также передачи сигналов VESA EDID и VESA MCCS. Также, в отличие от DVI, тактовый сигнал передаётся по сигнальным линиям, а не отдельно, и декодируется приёмником.

DisplayPort имеет опциональную возможность защиты контента от копирования DPCP (DisplayPort Content Protection), разработанную компанией AMD и использующую 128-битное AES-кодирование. Передаваемый видеосигнал несовместим с DVI и HDMI, но по спецификации допускается их передача. На данный момент DisplayPort поддерживает максимальную скорость передачи данных 17,28 гигабит/с и разрешение 3840×2160 при 60 Гц.

Основные отличительные особенности DisplayPort: открытый и расширяемый стандарт; поддержка форматов RGB и YCbCr; поддержка глубины цвета: 6, 8, 10, 12 и 16 бит на цветовую компоненту; передача полного сигнала на 3 метра, а 1080p — на 15 метров; поддержка 128-битного AES-кодирования DisplayPort Content Protection, а также 40-битного High-bandwidth Digital Content Protection (HDCP 1.3); бо́льшая пропускная способность по сравнению с Dual-Link DVI и HDMI; передача нескольких потоков по одному соединению; совместимость с DVI, HDMI и VGA при помощи переходников; простое расширение стандарта под изменяющиеся потребности рынка; внешнее и внутреннее присоединение (подсоединение LCD-панели в ноутбуке, замена внутренним LVDS-соединениям).

Обновленная версия стандарта — 1.1, появилась через год после 1.0. Её нововведениями стала поддержка защиты от копирования HDCP, важная при просмотре защищенного контента с дисков Blu-ray и HD DVD, и поддержка волоконно-оптических кабелей в дополнение к обычным медным. Последнее позволяет передавать сигнал на ещё бо́льшие расстояния без потерь в качестве.

В DisplayPort 1.2, утверждённом в 2009 году, была вдвое увеличена пропускная способность интерфейса, до 17,28 гигабит/с, что позволило поддержать более высокие разрешения, частоту обновления экрана и глубину цвета. Также именно в 1.2 появилась поддержка передачи нескольких потоков по одному соединению для подключения нескольких мониторов, поддержка форматов стереоотображения и цветовых пространств xvYCC, scRGB и Adobe RGB. Появился и уменьшенный разъём Mini-DisplayPort для портативных устройств.

Полноразмерный внешний разъём DisplayPort имеет 20 контактов, его физический размер можно сравнить со всем известными разъёмами USB. Новый тип разъёма уже можно увидеть на многих современных видеокартах и мониторах, внешне он похож и на HDMI, и на USB, но также может быть оснащён защёлками на разъёмах, аналогичным тем, что предусмотрены в Serial ATA.

Перед тем как AMD купила компанию ATI, последняя сообщила о поставках видеокарт с разъёмами DisplayPort — уже в начале 2007 года, но слияние компаний отодвинуло это появление на какое-то время. В дальнейшем AMD объявила DisplayPort стандартным разъёмом в рамках платформы Fusion, подразумевающей унифицированную архитектуру центрального и графического процессоров в одном чипе, а также будущих мобильных платформ. NVIDIA не отстаёт от соперника, выпуская широкий ассортимент видеокарт с поддержкой DisplayPort.

Из производителей мониторов, объявивших о поддержке и анонсировавших DisplayPort-продукты, первыми стали Samsung и Dell. Естественно, такую поддержку получили сначала новые мониторы с большим размером диагонали экрана и высоким разрешением. Существуют переходники DisplayPort-to-HDMI и DisplayPort-to-DVI, а также DisplayPort-to-VGA, преобразующий цифровой сигнал в аналоговый. То есть даже в случае присутствия на видеокарте исключительно разъёмов DisplayPort, их можно будет подключить к любому типу монитора.

Кроме вышеперечисленных разъёмов, на старых видеокартах также иногда встречаются композитный разъём и S-Video (S-VHS) с четырьмя или семью штырьками. Чаще всего они используются для вывода сигнала на устаревшие аналоговые телевизионные приемники, и даже на S-Video композитный сигнал зачастую получают смешиванием, что негативно влияет на качество картинки. S-Video лучше по качеству, чем композитный «тюльпан», но оба они уступают компонентному выходу YPbPr. Такой разъём есть на некоторых мониторах и телевизорах высокого разрешения, сигнал по нему передается в аналоговой форме и по качеству сравним с интерфейсом D-Sub. Впрочем, в случае современных видеокарт и мониторов обращать внимание на все аналоговые разъёмы просто не имеет никакого смысла.

Несколько лет назад VGA выход был главным интерфейсом использовавшийся для подключения ЭЛТ-мониторов (мониторы с электро-лучевой трубкой)и ЖК-мониторы (жидко-кристалические мониторы).

VGA (Video Graphics Adapter) используется для вывода аналогового сигнала, разъем для которого соответственно называют VGA или D-Sub 15 (15-контактный разъем). Также можно встретить и такую расшифровку аббревиатуры VGA — Video Graphics Array (массив пикселей) Сам разъем имеет 15 ножек и чаще всего синего цвета. Впоследствии для ЖК мониторов стал использовать цифровой интерфейс DVI (Digital Visual Interface). Но этот выход не теряет своей популярности, он все еще используется в цифровых проекторах, в некоторых HDTV-телевизорах и в игровых консолях от Microsoft.

HDMI

HDMI (High Definition Multimedia Interface) — мультимедийный интерфейс, который позволяет передавать по кабелю до 10 м вместе с видеосигналом еще и аудио без потерь качества. Передача по одному кабелю одновременно видео и аудио данных уменьшает количество соединительных проводов.
Разработкой и поддержкой этого стандарта занимаются именитые компании электронной индустрии, такие как: Hitachi, Panasonic, Philips, Sony, Thomson и Toshiba. Благодаря этому, стандарт довольно быстро приобрел популярность, и теперь большинство видеоустройств, для вывода изображений высокого разрешения, имеет хотя бы один разъем HDMI.

В первой версии этого стандарта пропускная способность была 5 Гб/с, а в версии 1.3 она была увеличена в два раза и HDMI кабель способен передавать до 10.2 Гб/с. Кроме этого, в версии HDMI 1.3 была увеличена частота синхронизации до 340 Мгц и благодаря этому стало возможным подключать мониторы высокого разрешения, с поддержкой глубины цвета до 48 бит.

Главным конкурентом HDMI можно назвать разъем DisplayPort.

Если на вашей видеокарте отсутствует, то эту проблема легко решается с помощью переходника и разъема DVI.

DVI-выход

DVI (Digital Visual Interface) – цифровой интерфейс, который применяется для подключения видеокарты к ЖК-мониторов, телевизоров, проекторов, а также плазменных панелей. DVI обеспечивает неискаженный вывод изображения, за счет того, что видеосигнал не проходит двойное анлагово/цифровое преобразование, то есть сигнал передается напрямую. Это заметно на высоких разрешениях.

Есть несколько разновидности интерфейса DVI:
DVI-D — интерфейс для вывода только цифрового сигнала;
DVI-I – комбинированный, который имеет аналоговые линии (VGA). К DVI-I выходу мониторы, которые имеют аналоговый разъем, подключаются через специальный переходник.

Single-Link DVI и Dual-Link DVI

Для передачи сигнала используют одноканальный Single-Link DVI или двухканальный Dual-Link DVI.
Dual-Link DVI – интерфейс позволяющий выводить изображение высокого разрешения, более 1920 х 1200 (такие как 2560×1600 и 2048×1536), поэтому для ЖК-мониторов с большим разрешением (к примеру 30») нужно подбирать видоекарту с поддержкой двухканального выхода DVI Dual-Link.

S-Video (или S-VHS)

S-Video (или S-VHS) — аналоговый разъем, который используется для вывода изображения на телевизоры и видеотехнику. Пока качеству передачи сигнала превосходит выход типа «тюльпан». Аналоговый интерфейс S-Video подает сигнал низкого разрешения, где вся информация разделена на три канала, для каждого базового цвета. Хоть качество от этого лучше, но все также имеем низкое динамическое разрешение.

Композитный выход RCA («тюльпан»)

Композитный выход или разъём RCA (Radio Corporation of America) .
Обычный выход, который можно встретить на телевизорах и видеооборудовании. Для соединения используется коаксиальный кабель. На выходе образуется сигнал с низким разрешением и качество видео соответственно низкое.

Компонентный выход

Из-за большого размера компонентных разъемов, выходы расположены на переходнике. Первые три разъема отвечают за видео, два последних за звук.
Он представляет собой три раздельных разъёма «тюльпан»: «Y», «Pb» и «Pr». Благодаря этому на выходе получается разделенный цветовой сигнал для HDTV. Используется для вывода изображения на цифровые проекторы.