Нефтегазоносные месторождения шельфа россии. Залежи и месторождения нефти и газа

Вспомните

Какие полезные ископаемые вам известны?

Существуют топливные полезные ископаемые – торф, уголь, нефть (осадочное происхождение).

Рудные полезные ископаемые – руды цветных и черных металлов (магматическое и метаморфическое происхождение).

Нерудные полезные ископаемые – горно-химическое сырье, строительные материалы, минеральные воды, лечебные грязи.

Это я знаю

1. Что такое земельные ресурсы? Минеральные ресурсы?

Земельные ресурсы – территория, пригодная для расселения людей и размещения объектов их хозяйственной деятельности.

Минеральные ресурсы – природные вещества земной коры, пригодные для получения энергии, сырья и материалов.

2. Каково значение минеральных ресурсов в жизни человека?

Минеральные ресурсы – основа современного хозяйства. Из них получают топливо, химическое сырье, металлы. От количества и качества минеральных ресурсов во чаще всего зависит благосостояние страны.

3. Чем обусловлено размещение полезных ископаемых?

Размещение полезных ископаемых обусловлено их происхождением.

4. Какие закономерности можно установить в размещении полезных ископаемых?

Месторождения руд черных и цветных металлов, золота, алмазов приурочены к выходам кристаллического фундамента древних платформ. Месторождения нефти, углей, природного газа приурочены к мощным осадочным чехлам платформ, предгорным прогибам, шельфовым зонам. Руды цветных металлов так же встречаются в складчатых областях.

5. Где сосредоточены основные нефтегазоносные месторождения?

Основные нефтегазоносные районы сосредоточены в шельфовых зонах – Северное море, Каспийское море, Мексиканский залив, Карибское море; осадочных чехлах платформ – Западная Сибирь; предгорных прогибах – Анды и Уральские горы.

7. Выберите верный ответ. Полезные ископаемые осадочного происхождения приурочены в основном: а) к щитам платформ; б) к плитам платформ; в) к складчатым областям древнего возраста.

Б) к плитам платформ

Это я могу

8. Используя схему «Образование горных пород» (см. рис. 24), объясните, какие превращения происходят с горными породами в результате круговорота веществ.

В результате круговорота веществ, происходит превращение одних полезных ископаемых в другие. Первичными можно считать магматические горные породы. Они образовались из излившейся на поверхность магмы. Под действием различных факторов магматические породы разрушаются. Обломочные частицы переносятся и осаждаются в других местах. Так формируются осадочные горные породы. В складчатых областях происходит смятие горных пород в складки. При этом часть из них погружаются на глубину. Под действием высоких температур и давления они переплавляются и превращаются в метаморфические горные породы. После разрушения метаморфических горных пород вновь образуются осадочные породы.

Это мне интересно

9. Считается, что в каменном веке почти единственным полезным ископаемым был кремень, из которого изготавливали наконечники стрел, топоры, копья, рубила. Как, по вашему мнению, изменились с течением времени представления людей о многообразии полезных ископаемых?

Представления людей о многообразии полезных ископаемых с каменного века очень быстро менялись. После кремня люди очень быстро нашли медь. Наступил медный век. Однако медные изделия для использования были непрочными и мягкими. Прошло еще немного времени, и люди познакомились с новым металлом - оловом. Олово - очень хрупкий металл. Мы можем предположить, что произошло так, что кусочки меди и кусочки олова попали в огонь или костер, где они расплавились и смешались. В результате появился сплав, объединяющий в себе лучшие качества как олова, так и меди. Так и была найдена бронза. Период бронзового века - это время, начиная с конца четвертого- до начала первого тысячелетия до нашей эры.

Как мы все знаем, железо в чистом виде не встречается на Земле - его нужно добыть из руды. Для этого руду нужно нагреть до очень высокой температуры, и только после этого из нее можно выплавить железо.

То, что века были названы в честь полезных ископаемых, говорит о их огромном значении. Использование все новых полезных ископаемых открывает для человека новые возможности и может коренным образом изменить все хозяйство.

С тех прошло очень много времени и сейчас люди используют огромное количество минеральных ресурсов для разных целей. Разведка и добыча минеральных ресурсов актуальная задача для хозяйства во все времена.

10. Известный отечественный геолог Е.А. Ферсман писал: «Мне хочется извлечь сырой, на первый взгляд неприглядный материал из недр Земли… и сделать его доступным человеческому созерцанию и пониманию». Раскройте смысл этих слов.

Минеральные ресурсы, при извлечении из их из земной коры чаще всего имеют вид далекие от внешнего вида продукта, который из него получают. Они действительно представляют собой неприглядный материал. Но при правильном подходе, переработке из этого материала можно извлечь много ценного для человека. Ферсман говорил о ценности недр Земли, о необходимости их изучения и разумного подхода к этому.

Нефтегазоносные комплексы (НГК) представляют собой комплексы пород осадочного чехла и верхней части фундамента нефтегазоносных провинций, имеющие относительно единые условия формирования и преобразования пород, ОВ и месторождений нефти и газа, а также единые гидродинамические условия.

НГК характеризуются следующими показателями:

1) литологическим составом и возрастом пород;

2) толщиной и площадью распространения (объёмом);

3) соотношением коллекторов и флюидоупоров, нефтегазопроизводящих и продуктивных пород;

4) гидрогеологическими условиями;

5) генетическими и морфологическими типами ловушек;

6) условиями залегания и закономерностями размещения залежей нефти и газа.

По литолого-стратиграфическому объёму НГК охватывают одну-две или три смежные формации или являются их частью.

Классификации нефтегазоносных комплексов . Э.А. Бакиров классифицировал НГК по генетическому и геотектоническому признакам. В основе генетического признака лежит характер соотношения нефтепроизводящих и нефтесодержащих пород, а в основе геотектонического признака - характер пространственного распространения НГК.

По характеру соотношения нефтепроизводящих и нефтесодержащих пород или признаку первичной и вторичной нефтегазоносности НГК разделяются на первично-нефтегазоносные, вторично-нефтегазоносные и смешанные.

Первично-нефтегазоносные, или сингенетичные, НГК состоят из нефтегазопроизводящих пород, пород-коллекторов и перекрывающих их региональных флюидоупоров. Снизу такие комплексы изолированы покрышкой нижележащего регионального нефтегазоносного комплекса или породами фундамента.

Во вторично-нефтегазоносных, или эпигенетичных, НГК нефтегазопроизводящие породы отсутствуют, обладают малой продуктивностью или ещё не достигли главной зоны нефтеобразования. УВ поступают в них из сингенетичных комплексов в результате вертикальной миграции по проницаемым зонам. Масштаб нефтегазоносности эпигенетичных НГК находится в прямой зависимости от производящего потенциала нижележащего сингенетичного комплекса и экранирующих свойств его покрышки.

В смешанных, или эписингенетичных, НГК залежи содержат как сингенетичные УВ, так и УВ мигрировавшие из других комплексов.

По масштабам распространения НГК разделяются на региональные, субрегиональные, зональные и локальные. Региональные НГК принимаются в этой классификации в трактовке А.А. Бакирова, впервые выделившего их в 1959 году, как литолого-стратиграфические подразделения, содержащие скопления нефти и газа в пределах обширных территорий, соответствующих НГП или большим их частям. К субрегиональным НГК относятся комплексы пород, содержащие скопления нефти и газа только в пределах одной нефтегазоносной области какой-либо провинции. Комплекс пород, продуктивный в пределах зоны нефтегазонакопления, выделяется как зональный НГК . Локальные НГК продуктивны в пределах одного или нескольких месторождений, не связанных общими признаками.


Строение проницаемой части НГК . Проницаемая или внутренняя часть НГК по объёму соответствует водоносному комплексу ГГБ - проницаемой толще пород, заключённой между двумя региональными водоупорами (покрышками). По внутреннему строению проницаемой части НГК можно разделить на четыре типа.

К первому типу относятся НГК, в которых основную часть разреза составляют гидродинамически связанные проницаемые породы. Внутри таких комплексов могут быть лишь локальные, бессистемно расположенные флюидоупоры. В комплексах этого типа крупные залежи нефти и газа, как правило, приурочены к кровле пород-коллекторов и связаны с массивными и массивно-пластовыми природными резервуарами.

Ко второму типу относятся НГК, в которых относительно выдержанные породы-коллекторы и флюидоупоры чередуются между собой. Поэтому залежи нефти и газа здесь могут формироваться по всему разрезу комплекса в природных резервуарах пластового и пластово-массивного типа. Многопластовые месторождения относятся к сводовому и дизъюнктивно экранированному типам структурного класса, а также к литологически экранированному типу литологического класса. Количество продуктивных пластов в месторождении может достигать сорока и более.

К третьему типу относятся НГК, в составе которых преобладают непроницаемые породы. Здесь развиты литологически ограниченные природные резервуары и ловушки, которые приурочены к отдельным линзовидным телам проницаемых пород. Природные резервуары пластового типа имеют подчиненное положение. Залежи нефти и газа в таких комплексах могут быть встречены по всему разрезу НГК. Этот тип НГК широко распространён в дельтовых комплексах и отложениях материковых подножий (турбидитах).

К четвертому типу НГК относится особый тип сингенетичных комплексов, связанный с глинистыми породами типа баженитов и доманикитов, а также – с некоторыми карбонатными разностями пород. В этих НГК нефтегазопроизводящие породы одновременно являются и нефтегазосодержащими. Продуктивность НГК данного типа во многом связана с высоким содержанием ОВ и зонами новейшей тектонической активизации.

В пределах малоизученных территорий, а также в нижних частях разреза осадочного чехла старых НГП выделяют перспективно нефтегазоносные комплексы . Это части разреза, в которых скопления нефти и газа ещё не выявлены, но имеются фактические данные для их обнаружения – это наличие: пород-коллекторов; флюидоупоров; органического вещества в концентрациях, превышающих 0,1-0,2 % для карбонатных пород и 0,4-0,5 % для глинистых пород; пластовых температур, характерных для главной зоны нефтеобразования или главной зоны газообразования; тектонической дислоцированности комплекса; ловушек и других. Например, в Предкавказье, где большая часть осадочного чехла изучена относительно хорошо, таким перспективным НГК является палеозойский комплекс пород.

В настоящее время установлена региональная нефтегазоносность фундамента на всех континентах, исключая Антарктиду и в большинстве акваторий Земли. В связи с этим породы фундамента нефтегазоносных и перспективно нефтегазоносных провинций следует относить к перспективно нефтегазоносным комплексам, независимо от представлений об образовании нефти и газа.

В разрезе нефтегазоносных провинций выделяется не менее двух региональных НГК. Их общая толщина, вместе с перекрывающим флюидоупором, обычно лежит в пределах от 2 до 4 км. Над верхним НГК, выше самого верхнего регионального флюидоупора, выделяется аконсервационная зона , в которой залежи нефти и газа уже не могут сформироваться из-за гидродинамической открытости разреза.

Многоэтажное распределение скоплений УВ в разрезе земной коры связано с периодичностью тектонического развития крупных геоструктурных элементов земной коры, их расслоенностью на породы-коллекторы, флюидоупоры и, соответственно, с периодичностью процессов накопления ОВ, нефтегазообразования и нефтегазонакопления.

Таким образом, для формирования и существования нефтегазоносных комплексов необходимы следующие важные условия:

1) относительное единство условий формирования и преобразования пород-коллекторов и флюидоупоров, ОВ, ловушек, нефтяных и газовых месторождений;

2) наличие единых главных источников УВ;

3) относительная гидродинамическая изолированность НГК и гидродинамическая взаимосвязь его проницаемой части;

4) определённая степень тектонической дислоцированности от которой зависит образование структурных ловушек и размещение залежей нефти и газа по разрезу и площади;

5) определённые палеотектонические и палеогеографические условия формирования, от которых зависит развитие ловушек литологического и стратиграфического типа.

Данные свойства позволяют использовать в пределах выявленных НГК единую методику поисково-разведочных работ и широко применять геологические аналогии.

Залежь

Ловушки

По Леверсену ловушка обуславливает способность остановить движение флюидов и обеспечить накопление нефти и газа.

Окнова под ловушкой УВ предлагает понимать, часть природного резервуара, в котором благодаря наличию проницаемого коллектора и непроницаемой покрышки создаются благоприятные условия для улавливания,скопления и сохранения УВ.

Классификация ловушек по Бакирову (на генетической основе):

1 класс – структурные ловушки, образованные в результате изгиба слоев или разрыва их сплошности.

2 класс – стратиграфические ловушки, сформированые в результате эрозии пластов коллекторов во время перерыва в накоплении осадков (в эпоху восходящих движений) и перекрывающие их затем непроницаемыми породами (в эпоху нисходящих движений). Как правило, толщи пород, образовавшиеся после перерыва в осадконакоплении, характеризуются более простыми структурными формами залегания.

Поверхность, определяющая эти толщи, от толщ, возникших ранее, называется поверхностью стратиграфического несогласия.

3-ий класс – литологические ловушки.

Они образованы в результате литологического замещения пористых проницаемых пород непроницаемыми.

4-ый класс – рифогенные ловушки.

Они сформированы в результате отмирания организмов «рифостроителей» (кораллов, мшанок), накопления их скелетных остатков в форме рифового тела и последующего его перекрытия непроницаемыми породами.

Залежь – скопление УВ в ловушке, все части которой гидродинамически связаны.

Классификация залежей по Броду.

1.пластовые

1.1.сводовые

а) не нарушенные

б) слабонарушенные

в) разбитые на блоки

1.2.экранированные

а) тектонически

б) стратиграфически

в) литологически

г) гидравлически

2.массивные в выступах:

а) структурных

б) эрозионных

в) биогенных (рифогенных)

3.ограниченные со всех сторон

б) непроницаемыми породами

в) водой и не проницаемыми породами

Классификация залежей по составу флюида:

1.чисто нефтяные

2.нефтяные с газовой шапкой

3.нефтегазовые

4.газовые с нефтяной оторочкой

5.газоконденсатные

6.газоконденсатно-нефтяные

7.чисто газовые

Классификация залежей нефти и газа по их запасам:



Отличия между классификациями:

1.В США технически более доступное и совершенное оборудование для добычи нефти и газа, более низкий уровень добычи оказывается рентабельным.

2.В РФ отмечается пренебрежительное отношение к мелким залежам, погоня только за крупным экономическим или политическим эффектом.

Классификация залежей по значениям рабочих дебитов (по Конторовичу).

По сложности геологического строения выделяются залежи:

Простого строения - однофазные залежи, связанные с ненарушенными или слабо нарушенными структурами, продуктивные пласты характеризуются выдержанностью толщин и коллекторских свойств по площади и разрезу;

Сложного строения - одно- и двухфазные залежи, характеризующиеся невыдержанностью толщин и коллекторских свойств продуктивных пластов по площади и разрезу или наличием литологических замещений коллекторов непроницаемыми породами, либо тектонических нарушений;

Очень сложного строения - одно- и двухфазные залежи, характеризующиеся как наличием литологических замещений или тектонических нарушений, так и невыдержанностью толщин и коллекторских свойств продуктивных пластов.

Для разработки залежи большое значение имеет режим пласта, в котором находится залежь.

Режим пласта определяется энергией, обеспечивающей продвижение нефти или газа к забоям скважин. Оно может осуществляться за счет:

1.силы тяжести нефти, газа и конденсата

2.упругого напора газовой залежи или шапки

3.расширения растворенного газа

4.расширения сжатой нефти

5.расширения сжатой воды

6.упругих релаксаций пород

7.напора законтурных вод.

Пять из семи энергетических источников (2-6) связаны с упругими силами, проявляющимися через сжатие флюидов и пород, а два источника (1 и 7)своим происхождением обязаны гравитации.

Долгое время, как в вопросе разработки, так и в вопросах формирования залежей отдавалось предпочтение влиянию гравитационных сил. При этом упускалось из виду, что любое проявление сил гравитации в земной коре неизбежно сопровождается упругими явлениями. Как правило, в пласте действуют все эти силы, поэтому наиболее распространены смешанные режимы. Можно говорить лишь о преобладающем влиянии того или иного источника силы, в пределах залежи или отдельных ее частях. Практически наибольшее значение имеют водонапорные режимы и упругого напора свободного и растворенного газа.

Пересечение газонефтяного контакта с кровлей пласта дает внешний контур газоносности .

Пересечение газонефтяного контакта с подошвой пласта дает внутренний контур газоносности.

Пересечение водонефтяного контакта с кровлей пласта дает внешний контур нефтеносности.

Пересечение водонефтяного контакта с подошвой пласта дает внутренний контур нефтеносности.

Для массивной залежи характерны только внешние контуры газо и нефтеносности.

Составными частями бассейнов являются нефтегазоносные комплексы.

Нефтегазоносным комплексом – называют часть разреза осадочного бассейна, содержащую скопления нефти и газа и, характеризующуюся относительным единством: условий накопления пород, формирования коллекторов, флюидоупоров, накопления и преобразования органического вещества, формирования гидродинамической системы.

Основными характеристиками нефтегазоносного комплекса являются:

Возраст и условия накопления пород;

Объем комплекса (толщина, площадь распространения)

Литологический состав разреза;

Сочетание коллекторов и флюидоупоров;

Условия залегания и размещения нефти и газа;

Соотношение нефтепроизводных и нефтеносных толщ;

Морфологические и генетические типы ловушек.

Нефтегазоносные комплексы рассматриваются как природные систем, обладающие различными способами, прежде всего, аккумулятировать УВ, а иногда и генерировать.

Комплексы состоят из главных элементов:

1.порода-коллектор слагает природный резервуар;

2.порода-флюидоупор

3. не всегда нефтематеринская порода.

По масштабам распространения нефтегазоносные комплексы подразделены Бакировым на:

1.региональные

2.субрегиональные

3.зональные

4.локальные.

Осадочные бассейны и их части могут включать один или несколько нефтегазоносных комплекса различных порядков. Нефтегазоносные комплексы обычно являются самостоятельными объектами поисков и разведки.

Ниже приведены примеры регионально нефтегазоносных комплексов.

Продуктивная толща Апшеронского полуострова, Прикуринской низменно­сти и Гобустана в Азербайджане и красноцветная толща Юго-Западной Туркме­нии, объединяющиеся в акватории Южного Каспия, - это генетически единый терригенный комплекс среднего плиоцена. Толщина его более 3 км, сложен чере­дованием песков, песчаников и глин, накопившихся в мелководном опресненном бассейне. Коллекторы - мелко- и среднезернистые пески различной толщины (от долей метра до 20-30 м). Сверху комплекс ограничен преимущественно глини­стыми отложениями верхнего плиоцена, а подстилается преимущественно глини­стыми отложениями понтического яруса (нижний плиоцен), миоцена и палеогена. Комплекс регионально нефтегазоносен на большей части площади и в разных ча­стях разреза - от кровли до подошвы, залежи расположены крайне неравно­мерно.

В Западно-Сибирском НГБ регионально нефтегазоносен терригенный песчано-глинистый комплекс мела - юры. На площади, превышающей 1,5 млн.км 2 , он характеризуется общностью условий тектонического развития, осадконакопления, структурных форм осадочного чехла и закономерностей распределе­ния нефти и газа. Все залежи заключены в терригенных коллекторах. С юга на север расширяется стратиграфический диапазон нефтегазоносности: на юге ре­гиона нефтеносны юра и доюрский комплекс (мелкие залежи в выступах палео­зоя); в Среднем Приобье нефтеносны юрские и нижнемеловые отложения, верх­немеловые - газоносные; на севере бассейна, между реками Пур и Таз, на п-ове Ямал в юре (там, где она вскрыта) установлены нефтяные залежи или нефтегазопроявления, в нижнем мелу - газоконденсатные залежи с нефтяными отороч­ками, в верхнему мелу - гигантские газовые залежи. Определяющий тип лову­шек - пластовые сводовые; во многих случаях из-за несовершенства локальных экранов пласты гидродинамически объединяются в массивные залежи. Рассмот­ренный нефтегазоносный комплекс нередко делят на части: верхняя (апт - сеноман)-газоносная, средняя (нижний мел) - газонефтеносная (нефть преобла­дает), нижняя (юра) -нефтеносная.

Надсолевые и подсолевые отложения Прикаспийской впадины образуют два самостоятельных комплекса по условиям залегания, характеру скоплений нефти и газа, типам коллекторов. Верхний - надсолевой - представлен терригенными отложениями верхней перми, триаса, юры и мела. Залежи контролируются соля­ными куполами кунгурского яруса нижней перми, над которыми в мезозойских отложениях формируются ловушки; встречаются залежи, экранированные соля­ными штоками. Подсолевой комплекс отделен от надсолевого мощной толщей соли и ангидритов кунгурского яруса нижней перми и сложен карбонатными и терригенными нижнепермскими, каменноугольными и девонскими породами. Для его характерны крупные массивы известняков, в которых заключены газоконден­сатные и нефтегазоконденсатные залежи.

Регионально газоносный верхнеюрский комплекс Западного Узбекистана и Восточной Туркмении сложен известняками, часть которых представлена погре­бенными рифами, содержащими основные скопления газа. Комплекс перекрывает верхнеюрская же соляно-ангидритная пачка - региональный флюидоупор. Ниже залегает терригенный газонефтеносный комплекс нижней- средней юры, он пока слабо изучен, однако есть основания ожидать в нем залежи.

В приведенных примерах рассмотрены крупные по объему регионально нефтегазоносные комплексы. Во многих районах выделяются комплексы, харак­теризующиеся меньшим объемом, например:

терригенные отложения среднего и низов верхнего девона в Волго-Уральском и Тимано-Печорском НГБ;

карбонатные породы карбона - нижней перми в этих же бассейнах;

терригенные отложения миоцена - олигоцена в Предкавказье;

карбонатные породы миоцена - олигоцена (свита Асмари) в Месопотамской впадине и др.

Нефтегазоносные комплексы обычно являются самостоятель­ными объектами поисков и разведки, в связи с этим необходимы разные методики их изучения и зачастую разное буровое оборудование и геофизическая аппаратура.

Традиционно в сентябре отмечается День нефтяника, (День работников нефтяной, газовой и топливной промышленности), в РФ это день отмечают, как и в советское время – первое воскресенье сентября, в Украине, праздник перенесли на второе воскресенье сентября.

Нефть — это маслянистая горючая природная жидкость, состоящая из сложной смеси углеводородов и некоторых органических соединений. До сих пор нет однозначного мнения ученого мира насчет происхождения нефти, хотя основной гипотезой считается — захоронение органических веществ осадочными породами с последующим сложным преобразованием.

Нефть одно из главных полезных ископаемых на планете, однако, ее запасы распределены не равномерно. Да и используются своими государствами по разному. К примеру, Россия находясь на 7 месте в мире по запасам нефти 77 млрд. баррелей, добывает нефти столько (505 млн.т.), сколько добывают США (294 млн.т.), Канада (173,4 млн.т.) и Казахстан (70 млн.т.) вместе взятые (2010 год).

Запасмы нефти на самых крупных месторождениях нефти превышают 10 млрд. тонн. Далее Топ 10 самых крупных месторождений нефти.

1 Нефтяное месторождение Чиконтепек 22,1 млрд.тонн (Мексика)


Супергигантское нефтегазовое месторождение в Мексике, находящихся на восточном побережье Мексики. Открыто в 1926 году.
Оператор: Pemex

2 Нефтяное месторождение Аль-Гавар 20 млрд.тонн (Саудовская Аравия)


Крупнейшее по запасам нефтегазовое месторождение-гигант в Саудовской Аравии. Одно из крупнейших месторождений нефти и газа в мире, расположеон в бассейне Персидского залива.
Оператор: Saudi Aramco

3 Нефтяное месторождение Большой Бурган 13 млрд. тонн (Кувейт)


Крупнейшее месторождение-гигант, в котором сосредоточено более 5 % разведанных извлекаемых запасов нефти в мире до 2004 года
Оператор: Kuwait Petroleum Corp

4 Нефтяное месторождение Кариока Сугар Лоаф 11 млрд.тонн (Бразилия)


Группа Крупных Нефтегазовых Месторождений в Бразилии. Расположено в Атлантическом океане 330 км юго-востоку от г. Сан-Паулу
Оператор: Petrobras

5 Нефтяное месторождение Шельф Боливар 8,3 млрд. тонн (Венесуэлла)


группа нефтяных месторождений в Венесуэле (Нефтегазоносный бассейн Маракайбо). Включает месторождения Лагунильяс, Тиа-Хуана, Бочакеро
Оператор: Petroleos de Venesuela

6 Нефтяное месторождение Верхний Закум 8,2 млрд. тонн (ОАЭ)


Супергигантское Нефтяное Месторождение ОАЭ, находящееся в Персидском заливе.
Оператор: ADNOC, ExxonMobil, Japan Oil Development Co.

7 Нефтяное месторождение Самотлорское 7,1 млрд тонн (Россия)


Крупнейшее в России и одно из крупнейших в мире месторождений нефти. Расположено в Ханты-Мансийском автономном округе, вблизи Нижневартовска, в районе озера Самотлор. В переводе с хантыйского Самотлор означает «мёртвое », «худая вода».
Оператор: ТНК-ВР

8 Нефтяное месторождение Северное / Южный Парс 7 млрд. тонн (Иран, Катар)


Супергигантское Нефтегазовое Месторождение, крупнейшее в мире. Находится в центральной части Персидского залива в территориальных водах Катара (Северное) и Ирана (Южный Парс)
Оператор: Qatar Gaz, Petropars

9 Нефтяное месторождение Кашаган 6,4 млрд.тонн (Казахстан)


Супергигантское нефтегазовое месторождение Казахстана, расположенное на севере Каспийского моря. Относится кПрикаспийской нефтегазоносной провинции.
Оператор: ENI, КазМунайГаз, Chevron, Total, Shell

10 Нефтяное месторождение Дацин 6,3 млрд. тонн (Китай)


Супергигантское Нефтяное Месторождение, крупнейшее в Китае.
Оператор: PetroChina

Нефтегазоносность фундаментов, древних осадочных комплексов пород и примеры блокового строения нефтегазоносных бассейнов

Проявления и промышленные залежи нефти и газа известны в породах фундаментов и базальных горизонтов осадочных бассейнов США, Венесуэлы, Ливии, Марокко, Египта, Австрии, Югославии, Венгрии, стран СНГ, Китая и в недрах других государств.

Фундаменты тектонотипов платформенных областей, краевых и подвижных систем характеризуются разными по составу и возрасту комплексами пород. Углеводородные скпления выявлены в гнейсах, сланцах, кварцитах и прочих метаморфитах, вулканогенных образованиях и, конечно, в гранитоидах и корах их выветривания. Подсчитано, что к последним приурочено около 40% от числа залежей, открытых в породах фундаментов , а если учесть их объем, то с гранитоидами связано более 3/4 запасов углеводородов в фундаментах нефтегазогеологических объектов .

Когда рассматриваются вопросы нефтегазоносности пород фундамента, сопутствующих им кор выветривания и базальных горизонтов чехла, обычно основное внимание сосредотачивается на роли зон разломов в формировании коллекторов и залежей УВ . Приводятся примеры разных по строению месторождений нефти и газа, нефте- и битумопроявлений, выходов горючих газов так или иначе приуроченных к системам глубинных нарушений, закономерно делящих земную кору на разновеликие блоки. В современной геологической структуре планеты часть таких блоков лишена осадочного покрова и на дневной поверхности выступает в виде щитов и массивов, сложенных комплексами кристаллических пород, другая часть блоков перекрыта осадками разного состава, толщина которых изменяется в зависимости от условий их развития и гипсометрического положения, и на дневной поверхности проявляется в виде тектонических элементов различного масштаба и морфологии .

Активные гидротермальные и дегазационные процессы протекают в зонах разломов не только континентов, но и в рифтовых системах срединно-океанических хребтов, чаще всего лишенных осадочного слоя.

Таким образом, зоны глубинных разломов, особенно обновленные современными движениями, - “кровеносная система”, по которой происходит флюидо- и теплообмен в земной коре, способствующий генерации УВ и их последующему онтогенезу. С разломами во многом связаны процессы формирования зон нефтегазонакопления, резервуаров и залежей нефти и газа, а также пространственное размещение последних.

И.М. Шахновский, рассматривая условия нефтегазоносности пород фундамента, отмечает, что в блоках фундамента, перекрытых отложениями чехла, нефтегазоносность чаще всего приурочена к коре выветривания, мощность которой достигает 50-80 м, но обычно не превышает 10-15 м . Для образующихся здесь вторичных коллекторов характерны сложные причудливые очертания и резкая изменчивость свойств в пространстве. Для резервуаров, формирующихся в зонах разломов, характерна линейная форма. Соответственно коллекторы в корах выветривания подразделяются на площадные, линейные и смешанного типа. Автор приводит характеристики месторождений с залежами нефти и газа в различных по составу, мощности и глубине залегания корах выветривания молодых и древних фундаментов. Это месторождения, открытые в Центральном Техасе США (Орф и др.), Венесуэле (Ла-Пас, Мара), Алжире (Хасси-Мессауд), Казахстане (Оймаши) и другие.

К.Е. Веселов и И.Н. Михайлов приводят статистические данные о месторождениях нефти и газа, открытых в породах фундамента в Австралии, на островах Тихого океана, в Азии, Африке, Европе, Америке . Обычно наблюдается плановое соответствие нефтегазоносных площадей в фундаменте и в осадочном чехле; редко скопления УВ обнаруживаются только в фундаменте. Акцентируется внимание на теоретических аспектах поисков залежей нефти и газа на больших глубинах в породах фундамента (в фундаменте существуют развитые, постоянно обновляемые, горизонтальные и вертикальные системы трещин, которые в пределах платформ отражают их сложную многопорядковую разломно-трещинно-блоковую структуру). Образование последней объясняется с позиций тектоники глобального рифтогенеза. В этой концепции гармонично сочетаются фиксистские и мобилистские представления о тектогенезе, позволяющие обоснованно рассмотреть развитие земной коры и образование ее трещинно-блоковой делимости. Особое внимание уделяется трещинообразованию. В зависимости от масштабов его проявления системы трещин могут соединять не только разные горизонты осадочного чехла, но и проникать глубоко в породы фундамента, способствовать миграции флюидов и формированию залежей УВ в геологической среде, традиционно считавшейся неперспективной. Трещинно-блоковое строение коры приводит к тому, что в зависимости от местоположения одни и те же породы могут быть как монолитно-непроницаемыми, так и хорошими вторичными коллекторами, пористость которых определяется трещиноватостью и действием разных физико-химических процессов. Известные в породах фундамента месторождения нефти и газа - не случайность (хотя в подавляющем большинстве своем открыты они случайно!), а проявление определенной закономерности, позволяющей предполагать на больших глубинах огромные скопления УВ. Основными объектами поисков должны стать трещинно-разломно-блоковые структуры континентальной коры, которые должны иметь большие вертикальные и ограниченные горизонтальные размеры. Трещинообразование в твердых породах и на больших глубинах - широко распространенный геологический процесс, способствующий нефтегазонакоплению .

В.Л. Шустер приводит сведения (состав пород, запасы и дебит скважин, толщина нефтенасыщенной части разреза, коллекторские свойства) о некоторых нефтяных и газовых месторождениях, открытых в кристаллических породах на территории Ливии, Египта, Индии, Бразилии, Венесуэлы, США и Казахстана. Месторождения, как правило, многопластовые, залежи частично или полностью литологически и (или) тектонически экранированы, располагаются в нормально осадочных породах и в трещиноватых гнейсах, гранитах, гранодиоритах, гранофирах, порфиритах фундаментов разного возраста. Комплексы пород фундаментов Западно-Сибирской плиты, Сибирской платформы, на территории арктических и северо-восточных морей, Дальнего Востока могут быть новыми перспективными объектами поисков залежей нефти и газа.

Формирование скоплений УВ в пределах фундамента обязано взаимодействию двух встречных потоков: глубинных паров, газов и тепла, стремящихся снизу из недр земли и охлажденного органического минерального вещества, опускающегося сверху в недра. Миграции флюидов и возникновению термобарических условий для образования УВ способствуют зоны проницаемости, приуроченные к глубинным разломам. Разломы также контролируют образование разных структур и связанных с ними ловушек, преобразование плотных гранитоидов в трещиноватые, распространение коллекторов и покрышек. Эти требования отвечают условиям нефтегазонакопления как в кристаллических породах фундамента, так и в отложениях чехла. Генезис УВ для промышленного использования нефти и газа существенного значения не имеет .

Нефтяные месторождения, связанные с коллекторами в гранитоидах, известны в России, Казахстане, Ливии, Китае, Индии, США, Канаде. Подавляющее большинство их приурочено к зонам выветривания небольшой мощности.

На этом “фоне” показательны строение и условия нефтеносности месторождения Белый Тигр, расположенного в Меконгской (Кыулонгской) впадине на шельфе Южного Вьетнама . На месторождении изначально продуктивным считался кайнозойский осадочный чехол, в котором нефтеносными являются песчаники нижнего олигоцена и нижнего миоцена, пока в 1988 г. в “свежих” мезозойских гранитоидах фундамента не была открыта уникальная нефтяная залежь. Здесь сосредоточено до 70% начальных геологических запасов категорий С 1 +С 2 . Исключителен объем нефтенасыщенных гранитоидов - высота залежи свыше 1300 м и высоки значения фильтрационных свойств пород, что позволяет получать из них более 90% общей добычи нефти. И это при том, что скважинами, пробуренными на глубины свыше 5000 м, ВНК (в общепринятом толковании) так и не установлен!

Структура месторождения Белый Тигр представляет собой горстообразное поднятие, разновеликие блоки которого образовались в период активизации палеогеновых движений вдоль конседиментационных сбросов северо-восточного простирания. Амплитуда их по поверхности фундамента 1500-1600 м и более, в чехле она понижается и в отложениях верхнего олигоцена уже не превышает 400-500 м; смещения по другим сбросам редко достигают 150-200 м. По кровле фундамента поднятие четко делится на три основных части блока, представленных Южным, Центральным (наиболее приподнятым) и Северным сводами, которым, в свою очередь, свойственна более дробная делимость. Размерность поднятия: длина - несколько десятков километров, ширина и высота - более 1.5 км, отметка замка - 4650 м (рис. 51) .

Рис. 51. Расположение основных месторождений шельфа Южного Вьетнама и

структурно-тектоническая схема поверхности фундамента месторождения Белый Тигр

1 - границы тектонических структур; 2 - месторождения; 3 - основные разломы; 4 – изогипсы поверхно­сти фундамента, км; 5 - скважины. Месторождения: БТ - Белый Тигр, ДХ - Дайхунг, ДР - Дракон, ТД - Тамдао.

Мощность кайнозойского чехла изменяется от 3000 м на поднятых блоках и до 8000 м в пределах опущенных блоков. Фундамент сложен гранитами, гранодиоритами, кварцевыми диоритами; коэффициенты монопородности блоков - 0.73; 0.57 и 0.8. Характерны дайки и лавовые покровы (диабазы, базальты и т.п.) над фундаментом.

Емкостные и фильтрационные свойства обусловлены вторичной пустотностью трещинного, каверно-трещинного и блокового типов; на приточность флюида наиболее сильно влияет трещиноватость пород.

Нефтяная залежь “разбита” по блокам фундамента на разных гипсометрических уровнях и экранируется верхне- и нижнеолигоценовыми глинисто-аргиллитовыми породами мощностью от 5-20 до 40-60 м, на участках, где покрышка маломощна, притоки нефти обычно невелики или отсутствуют. Здесь, возможно, происходит переток УВ из пород фундамента в отложения нижнего олигоцена. Максимальная глубина доказанного нефтенасыщения - 4350 м, предполагаемого - 4650 м .

Нефтеносность пород фундамента установлена и на других структурах Меконгской впадины - блоки Дракон, Тамдао, Баден, Биви, крупные запасы прогнозируются на месторождении Дайхунг в Южно-Коншонской впадине.

О.А. Шнип , рассмотрев условия нефтегазоносности фундаментов, предлагает геологические критерии оценки перспектив пород фундамента на нефть и газ:

1. Гранитоиды – наиболее вероятная группа пород фундамента, способная аккумулировать и сохранять промышленные скопления углеводородов.

2. Пути миграции флюидов связаны с трещиновато-разломными зонами и с другими системами пустотного пространства, которые могут возникать в фундаменте.

3. Коллекторы в фундаменте образуются под влиянием разрывной тектоники и гипергенных воздействий, которые способствуют образованию пустотного пространства в любых породах.

4. Покрышками залежей нефти и газа в фундаменте служат горизонты непроницаемых пород осадочного чехла. Изолирующими комплексами могут быть и непроницаемые породы фундамента.

5. Приуроченность промышленных скоплений нефти и газа к фундаментам осадочных бассейнов.

6. Размещение скоплений углеводородов в выступах фундамента, возвышающихся над его кровлей на десяти, сотни и более метров.

7. Углеводородные включения в минералах гранитоидов.

8. Глубины залегания пород фундамента от 3.5 до 4.3 км.

9. Наличие зон нефтегазообразования на доступном для миграции УВ расстояния.

В.Л. Шустер, Ю.Г. Такаев , охарактеризовав строение месторождений нефти и газа в кристаллических образованиях Америки, Африки, Европы, Австралии, Азии, Китая, Индонезии и Вьетнама, также останавливаются на проблеме критериев оценки нефтегазоносности. Ссылаясь на известных авторов, давно занимающихся вопросами нефтегазоносности пород фундаментов и древних толщ. (Е.Р. Алиева и др., 1987; Е.В. Кучерук, 1991; Б.П. Кабышев, 1991; Р. Шерифф, 1980, 1987; и др.), они указывают следующие показатели нефтегазоносности фундаментов:

Залегание скоплений углеводородов в фундаментах ниже региональных поверхностей несогласия;

Резкая расчлененность рельефа фундамента;

Глубина залегания или нахождения скоплений УВ в фундаменте не может превышать глубины подошвы осадочного слоя в депрессиях бассейнов;

Структурный фактор (наиболее перспективны валы и выступы фундамента), в т.ч. наличие зон разломов;

Гидрогеологические условия сохранности скоплений нефти и газа;

Наличие пустотности в кристаллических породах.

Анализ предложенных критериев и показателей оценки нефтегазоносности пород фундаментов разных тектонотипов показывает, что большая часть их принципиально не отличается от признаков и условий нефтегазоносности и набора тектонических, литологических, гидрогеологических и геохимических показателей и критериев нефтегазонакопления и сохранности залежей углеводородов, обычно применяемых для оценки перспектив осадочных басейнов на нефть и газ. И в фундаменте, и в чехле в конечном счете главное – коллектор и покрышка! В формировании ловушек углеводородов важнейшую роль играют разломно-блоковые структуры, которые обусловили эрозионно-тектонический рельеф и региональные поверхности несогласия. И, кроме того, разломно-блоковые (межблоковые!) системы безусловно контролируют размещение в земной коре львиной доли месторождений нефти и газа.

Тектонический фактор в совокупности процессов, определяющих геологическую среду и ее нефтегазоносность, является ведущим. Именно тектогенез обусловливает развитие различных по масштабу, строению и возрасту осадочных нефтегазоносных бассейнов и их зональное распределение в земной коре . Его роль проявляется на всех уровнях прогноза и поиска месторождений нефти и газа. При этом тектонический режим, формируя (слоисто-) блоковую структуру бассейна, контролирует образование и размещение УВ в разрезе и по площади территории. Интенсивность и направленность структуроформирующих движений прямо или опосредованно воздействуют на обстановку и масштабы осадконакопления, степень изменения пород, тип и характер преобразования ОВ, области питания и разгрузки пластовых вод, изменение во времени геотермического градиента, региональные направления перетока флюидов и на другие процессы, сопровождающие или определяющие нефтегазоносность.

Установлен факт блокового контроля над формированием и размещением многих полезных ископаемых. Вполне очевидно, что глубинные нарушения, составляющие основу межблоковых (граничных) систем, представляют собой зоны подвижного сочленения разделяемых ими блоков и обусловливают определенную их автономность и специфику нефтегазоносности.

Как правило, блоковые и межблоковые системы более контрастно проявляются в структуре фундамента и нижней части осадочного чехла, чем в его верхней. На дневной поверхности они часто отражены складчатыми (пликативными) структурными формами (валы, прогибы и т.п.), нередко контролируемыми конседиментационными разломами.

В этом смысле показательно, например, строение восточной части Русской платформы, где на территории Башкортостана выделены регионально протяженные конседиментационные грабенообразные прогибы, контролирующие линейно выраженные зоны нефтегазонакопления (Е.В.Лозин, 1994) (рис. 52) .

Рис. 52. Карта изопахит кыновско-пашийской толщи осадков

1 - изопахиты, м; 2 - западная граница складчатого Урала; 3,4- границы выклинивания: пашийских (3) и кыновских (4) отложений; 5,6- зоны дизъюнктивов (ГП): установленных, предполагаемых; 7 - администра­тивная граница

Прослеживается геохронологическую последовательность и связь механизма образования грабенообразных прогибов с древней рифтовой структурой рифея-венда и указываются структурные предпосылки формирования возможных зон нефтегазонакопления, обусловленные блоковыми движениями. Эти предпосылки вполне могут быть применимы и к другим платформам, где предполагается нефтегазоносность древних толщ (рис. 53) .

Рис. 53, Структурно-тектоническая схема эйфельско-раннефранского подэтажа

Проблема нефтегазоносности древних толщ Восточно-Европейской (Русской) платформы связывается со структурно-тектоническими условиями, стратиграфией венд-кембрийского комплекса пород, более изученного, чем рифейские отложения, признаками нефтегазоносности (притоки докембрийских нефтей, полученные в скважинах Даниловской площади в центральной части Московской синеклизы, на территории Удмуртии, Башкортостана, Кировской и Пермской областей - площади Очер, Сива, Соколовская и др.), нефтематеринскими породами (нефтематеринский потенциал и время его реализации; черные аргиллиты - “вендский доманик” и темноцветные глины, обогащенные битумоидами, Московской синеклизы), коллекторами и покрышками (соответственно песчаные и глинистые пачки венд-кембрийского комплекса в Московской и Мезенской синеклизах; наиболее регионально выдержанная покрышка - глинистые отложения редкинской (усть-пинежской) свиты), ловушками (структурная и литологическая дифференциация древних толщ предполагает формирование ловушек разных типов). Тектонотипом ловушек, связанных с блоковым строением Камско-Бельского, Среднерусского, Московского и других авлакогенов, могут быть ловушки Юрубчено-Тохомской зоны нефтегазонакопления в рифейских и вендских отложениях Сибирской платформы . Анализ предпосылок нефтегазоносности древних толщ Восточно-Европейской (Русской) платформы указывает на наличие всех критериев вероятной продуктивности, присущих нефтегазоносным бассейнам; важно лишь найти зоны их благоприятного сочетания .

Тимано-Печорская НГП характеризуется в плане чередованием дислоцированных мобильных зон и относительно просто построенных стабильных областей. Структуры осадочного чехла повторяют вверх по разрезу в сглаженной форме основные черты строения фундамента, расчлененного глубинными разломами на блоки. Различные конфигурация, размеры и ориентировка поднятых и сопряженных с ними опущенных блоков обусловили глыбово-блоковое строение в стабильных областях и линейно-блоковое в мобильных зонах. Стабильные геоблоки в большей степени нефтеносные, мобильные - газоносные (рис.54)].

Рис.54. Тимано-Печорская нефтегазоносная провинция .

1-4 - границы структур: 1 - крупнейших, 2 - крупных, 3 - средних, 4 - крупные структуры.

А - Тиманская гряда: I - Восточно-Тиманский мегавал, II - Цилемско-Четласский мегавал, III - Канино-Северо-Тиманский мегавал. Б - Печорская синеклиза: IV - Омра-Лузская седловина, V - Ижемская впадина, VI - Нерицкая монокли­наль, VII - Малоземельско-Колгуевская моноклиналь, VIII - Печоро-Кожвинский мегавал, IX - Денисовский прогиб, X - Колвинский мегавал, XII - Лодминская седловина, XIII - Варандей-Адзьвинская структурная зона. В - Предуральский краевой прогиб: XIV - Полюдовское поднятие, XV - Верхнепечорская впадина, XVI - Средне-Печорское поднятие, XVII - Большесынинская впадина, XVIII - поднятие Чернышева, XIX - Косью-Роговская впадина, XX - поднятие Чернова, XXI - Коротаихинская впадина, XXII - Пайхойское поднятие. Г - Уральский кряж.

Несомненно тектоническая активность блоков влияет на их нефтегазоносность. И это, конечно, обусловлено двумя главными видами показателей, группы признаков которых характеризуют как структуру собственно блоков, так и перекрывающих их отложений чехла, в которых находятся нефтегазоносные объекты - НГК разной масштабности.

К тектонически активным - мобильным блокам приурочено более половины (56%) выявленных месторождений и залежей (65%) . С ними связана значительная часть крупных и крупнейших по геологическим запасам месторождений. Большая часть потенциальных ресурсов УВ: нефти до 70%, газа около 90% - сосредоточена в пределах мобильных геоблоков, где концентрация в среднем в 3-3.5 раза выше, чем в стабильных.

Мобильные мегаблоки характеризуются набором общих черт нефтегазоносности, хотя при детальном сравнении их между собой отмечаются определенные отклонения. Показательным в качестве примера является Предуральский мегаблок, отличающийся аномальным строением земной коры. В осадочном чехле, перекрывающим мегаблок, концентрируется более половины прогнозных ресурсов газа НГП. Эта величина может быть обусловлена сравнительной молодостью высокоинтенсивных ловушек и приуроченных к ним залежей, что в свою очередь объясняется своеобразным геодинамическим режимом мегаблока в заключительные стадии развития Тимано-Печорского бассейна .

В Тимано-Печорском бассейны границы ОНГО в стратиграфическом диапазоне нижнего силура - нижней перми и (или) резкой смены их продуктивности в целом также совпадают с границами крупных долгоживущих блоков земной коры. При этом наибольшая продуктивность характеризует блоки, испытавшие в геологической истории длительное устойчивое погружение - вне зависимости от их последующей инверсии - Предуральский прогиб, Печоро-Колвинский авлакоген, Варандей-Адзъвинская зона (в последней продуктивность ОНГО несколько меньше в следствие менее последовательного, менее устойчивого погружения, иногда сменявшегося подъемом). Размещение ЗНГН в бассейне также в основном подчиняется двум направлениям, ограничивающим основные блоки: субтиманскому и субуральскому; при этом ЗНГН, как правило, отвечают либо самым крупным линейным блокам, после длительного погружения претерпевшим частичную инверсию (Колвинский мегавал, Лайский вал и другие), либо границам крупных линейных блоков (Шапкино-Юряхский вал, вал Сорокина и другие).

В результате анализа распределения прогнозных ресурсов нефти и газа установлены корреляционные зависимости между строением блоков консолидированной земной коры и структурой перекрывающих их образований осадочного чехла. При прогнозе нефтегазоносности на региональном, зональном и, частично, на локальном уровнях должно учитываться не только строение собственно осадочного тела, слагающего НГБ и его отдельные части, но и всей толщи земной коры и происходящих в ней процессов, в той или иной степени влияющих на характер нефтегазоносности осадочной оболочки и стадий онтогенеза УВ, происходящих в ней .

В Прикаспийской впадине на всех этапах ее развития прослеживаются дискретные дифференцированные движения блоков фундамента, отраженные в осадочном чехле. Унаследованность древнего структурного плана доказана бурением на таких поднятиях как Тенгиз и Карачаганак, приуроченных к приподнятым блокам фундамента. К пограничным зонам блоков впадины могут быть приурочены разнотипные тектонически экранированные ловушки, а также надразломные и приразломные локальные поднятия .

Обобщение материалов, накопленных украинскими геологами в результате поисков нефти и газа в Днепрово-Донецкой впадине, Причерноморье, Крыму, Волыно-Подолии и других районах Украины, позволило им охарактеризовать роль разломной тектоники в формировании нефтегазоносных провинций (НГП) и областей (НГО), размещении зон нефтегазонакопления и месторождений УВ . Влияние блоковой составляющей структуры бассейна отражено в его нефтегазогеологическом районировании (рис. 56).

Интерес к нефтегазоносности кристаллического фундамента, а, соответственно и к блоковому его строению значительно возрос в связи с обнаружением «… сначала на площади Ахтырского нефтепромыслового района в Сумской области (скв. Хухринская – 1), а затем на участке Юльевской зоны в Харбковской оюласти в нескольких скважинах были обнаружены промышленные скопления нефти и газа, сосредоточенные непосредственно в верхних частях кристаллического фундамента на глубине более 250 м от его поверхности» . Примечателен вывод об участках Днепрово-Донецкой впадины, наиболее благоприятных для концентрации нефти и газа, тяготеющих к зонам долго живущих региональных разломов в основном северо-западного (305 0 -315 0) и северо-восточного (35 0 -45 0) направлений и к узлам их пересечений .

Рис. 55. Схема нефтегеологического районирования северного борта ДДА по осадочному чехлу и верхней трещиноватой зоне пород фундамента (по И.И. Чебаненко, В.Г.Демьянчуку,В.В. Кроту и др. (по данным с упрощениями автора)).

1 - граница Днепровско-Донецкой газонефтеносной области по осадочному чехлу (по изогипсе - 1 км по поверхности фундамента); 2 - северное краевое нарушение; 3 - тектонические нарушения (а - основные в по­родах фундамента, 6 - второстепенные); месторождения: 4 - нефтяные, 5 - нефтегазовые, 6 - газовые, 7 - пара­метрическая Сотниковская скв. 499.

Анализ данных ГСЗ по Западно-Сибирской плите и степени консолидации земной коры в ее пределах позволяет выделить блоки, разграниченные глубинными разломами, выявить их связь с верхней мантией, рассмотреть строение осадочного чехла и распределение месторождений нефти и газа в зависимости от типа блока. Большинство месторождений приурочено к блокам, которым соответствуют останцы древних складчатых комплексов, минимальное количество месторождений расположено в пределах блоков, соответствующих положению грабен-рифтов и зонам глубокой тектонической переработки . Наиболее отчетливо блоковое строение выражено в домезозойском основании плиты. Типичным примером блоковой структуры является Малоичский палеозойский выступ, расположенный в Нюрольской впадине . Он состоит из различных по величине блоков, разделенных разломами. Скважины, давшие притоки и фонтаны нефти, расположены в разных блоках, в основном наиболее приподнятых. Скважины, пробуренные непосредственно в зонах разломов, притоков обычно не дают. Рассматривая другие подобные примеры, можно сделать вывод - “... разломы не только способствуют проникновению УВ в породы-коллекторы, но и могут быть причиной расформирования залежей при последующих тектонических подвижках” . Обобщение материалов по Западной Сибири в целом показало, что для формирования скоплений УВ в осадочных отложениях земной коры имеют значение преимущественно длительно развивавшиеся “открытые” глубинные разломы. “Залеченные” разломы, заполненные минеральным веществом, не могли быть путями вертикального перемещения УВ.

Блоковая делимость литосферы – главный контролирующий фактор размещения полезных ископаемых в земной коре. Вполне вероятно и то, что блоковая делимость литосферы определяет генетические условия образования и формирования минеральных и энергетических полезных ископаемых .

17. Нетрадиционные виды и источники углеводородного сырья и

проблемы их освоения

Ресурсы УВ в недрах огромны, но лишь малая их часть, относимая к традиционным, изучается. За пределами исследований, поиска и освоения остается резерв ресурсов нетрадиционного УВ сырья, по объему на 2-3 порядка превышающий традиционный, но все еще мало изученный. Так, ресурсы метана в гидратном состоянии, рассеянного только в донных отложениях Мирового Океана и шельфов на два порядка (в нефтяном эквиваленте) превышают традиционные ресурсы УВ. Около 8-10 4 млрд. т н. э. метана содержатся в водорастворенных газах подземной гидросферы, причем только в зоне учета ресурсов УВ - до глубин 7 км. Огромны объемы практически разведанных ресурсов нефтяных песков - до 800 млрд. т н. э. в отдельных регионах мира - Канада, Венесуэла, США и другие .

В отличие от подвижной в недрах, традиционной части ресурсов нефти и газа, извлекаемых современными технологиями, нетрадиционные ресурсы плохо подвижны или неподвижны в пластовых условиях недр. Для их освоения нужны новые технологии и технические средства, увеличивающие себестоимость их поиска, добычи, транспорта, переработки и утилизации. Не все виды нетрадиционного сырья ныне технологически и экономически доступны к промышленному освоению, но в энергодефицитных регионах, а также в бассейнах с истощенными добычей запасами и развитой инфраструктурой отдельные виды нетрадиционного сырья могут стать основой современного эффективного топливно-энергетического обеспечения.

Основной прирост традиционных запасов нефти и газа в мире и, особенно, в России идет ныне на территориях с экстремальными условиями освоения - Арктика, шельфы, удаленные от потребителей географо-климатически неблагоприятные регионы и другое. Затраты на их освоение столь велики, что, в период перехода на новые сырьевые базы, освоение нетрадиционных резервов сырья, окажется не только неизбежным, но и конкурентноспособным .

Важность всестороннего и своевременного изучения нетрадиционных ресурсов УВ особенно очевидна, если учесть, что более половины всех учтенных, в качестве традиционных, запасов нефти в России, представлены их нетрадиционными видами и источниками. Следовательно, нельзя считать корректным тот уровень обеспеченности запасами нефтедобычи в России, который ныне рассматривается на основе суммы традиционных и нетрадиционных запасов, поскольку значительные их объемы не отвечают условиям рентабельного освоения.

Любая нефтегазоносная провинция в ходе освоения подходит к стадии истощения. Своевременная подготовка к разработке дополнительных резервов в виде нетрадиционных источников УВ позволит длительное время поддерживать уровень добычи с рентабельными экономическими показателями. В настоящее время степень выработанности большинства крупных разрабатываемых месторождений в России, в основном, превышает 60% и, примерно 43% общей добычи осуществляется из крупных месторождений со степенью выработанности 60-95%. Современная добыча нефти в России ведется в регионах с высокой степенью истощения запасов. Переход на освоение новых сырьевых баз в арктических и восточных акваториях, требует резерва времени и сверхнормативных капитальных затрат, к которым экономика России ныне не готова. Одновременно во всех НГБ, даже с глубоко истощенными запасами, имеются значительные резервы нетрадиционных ресурсов УВ, рациональное и своевременное освоение которых позволит поддержать уровень добычи. Достигнутый в мире прогресс в технологиях добычи нефтегазового сырья допускает освоение нетрадиционных видов и источников УВ, со стоимостью эквивалентной стоимости сырья на мировом рынке .

Исследования ВНИГРИ показали значительные резервы ресурсов нефти и газа в нетрадиционных ис­точниках и резервуарах. Их изучение и освоение позволит заполнить ту неизбежную паузу в обеспечении нефте-, а затем и газодобычи, которая неизбежно возникнет до ввода в освоение новых сырьевых баз в экстре­мальных по условиям освоения регионах. В перспективе нетрадиционные источники и виды УВ станут основой их сырьевой базы (см. «Сланцевый газ»). В настоящее время объемы добычи нетрадиционных УВ не превышают 10% от их общемировой добычи. Прогнозируется, что к 2060 г. они будут обеспечивать более поло­вины всей добычи УВ .

В настоящее время первоочередными для освоения представляются следующие виды и источники нетрадиционного углеводородного сырья:

1. Тяжелые нефти;

2.Горючие «черные» сланцы;

3.Низкопроницаемые продуктивные коллекторы и сложные нетрадиционные резервуары;