Уравнение плоскости: как составить? Виды уравнений плоскости. Уравнение плоскости, виды уравнения плоскости


Все уравнения плоскости, которые разобраны в следующих пунктах могут быть получены из общего уравнения плоскости, а также приведены к общему уравнению плоскости. Таким образом, когда говорят об уравнении плоскости, то имеют в виду общее уравнение плоскости, если не оговорено иное.

Уравнение плоскости в отрезках.

Уравнение плоскости вида , где a , b и c – отличные от нуля действительные числа, называется уравнением плоскости в отрезках .

Такое название не случайно. Абсолютные величины чисел a , b и c равны длинам отрезков, которые отсекает плоскость на координатных осях Ox , Oy и Oz соответственно, считая от начала координат. Знак чисел a , b и c показывает, в каком направлении (положительном или отрицательном) следует откладывать отрезки на координатных осях.

Для примера построим в прямоугольной системе координат Oxyz плоскость, определенную уравнением плоскости в отрезках . Для этого отмечаем точку, удаленную на 5 единиц от начала координат в отрицательном направлении оси абсцисс, на 4 единицы в отрицательном направлении оси ординат и на 4 единицы в положительном направлении оси аппликат. Осталось соединить эти точки прямыми линиями. Плоскость полученного треугольника и есть плоскость, соответствующая уравнению плоскости в отрезках вида .

Для получения более полной информации обращайтесь к статье уравнение плоскости в отрезках , там показано приведение уравнения плоскости в отрезках к общему уравнению плоскости, там же Вы также найдете подробные решения характерных примеров и задач.

Нормальное уравнение плоскости.

Общее уравнение плоскости вида называют нормальным уравнением плоскости , если равна единице, то есть, , и .

Часто можно видеть, что нормальное уравнение плоскости записывают в виде . Здесь - направляющие косинусы нормального вектора данной плоскости единичной длины, то есть , а p – неотрицательное число, равное расстоянию от начала координат до плоскости.

Нормальное уравнение плоскости в прямоугольной системе координат Oxyz определяет плоскость, которая удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости . Если p=0 , то плоскость проходит через начало координат.

Приведем пример нормального уравнения плоскости.

Пусть плоскость задана в прямоугольной системе координат Oxyz общим уравнение плоскости вида . Это общее уравнение плоскости является нормальным уравнением плоскости. Действительно, и нормальный вектор этой плоскости имеет длину равную единице, так как .

Уравнение плоскости в нормальном виде позволяет находить расстояние от точки до плоскости .

Рекомендуем более детально разобраться с данным видом уравнения плоскости, посмотреть подробные решения характерных примеров и задач, а также научиться приводить общее уравнение плоскости к нормальному виду. Это Вы можете сделать, обратившись к статье .

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

В предыдущем разделе, посвященном плоскости в пространстве, мы рассмотрели вопрос с позиции геометрии. Теперь же перейдем к описанию плоскости с помощью уравнений. Взгляд на плоскость со стороны алгебры предполагает рассмотрение основных видов уравнения плоскости в прямоугольной системе координат O х у z трехмерного пространства.

Yandex.RTB R-A-339285-1

Определение уравнения плоскости

Определение 1

Плоскость – это геометрическая фигура, состоящая из отдельных точек. Каждой точке в трехмерном пространстве соответствуют координаты, которые задаются тремя числами. Уравнение плоскости устанавливает зависимость между координатами всех точек.

Уравнение плоскости в прямоугольной системе координат 0хуz имеет вид уравнения с тремя переменными х, у и z . Удовлетворяют уравнению координаты любой точки, лежащей в пределах заданной плоскости, не удовлетворяют координаты любых других точек, которые лежат вне заданной плоскости.

Подстановка в уравнение плоскости координат точки данной плоскости, обращает уравнение в тождество. При подстановке координат точки, лежащей вне плоскости, уравнение превращается в неверное равенство.

Уравнение плоскости может иметь несколько видов. В зависимости от специфики решаемых задач уравнение плоскости может быть записано по-разному.

Общее уравнение плоскости

Сформулируем теорему, а затем запишем уравнение плоскости.

Теорема 1

Всякая плоскость в прямоугольной системе координат O x y z в трехмерном пространстве может быть задана уравнением вида A x + B y + C z + D = 0 , где А, В, С и D – некоторые действительные числа, которые одновременно не равны нулю. Всякое уравнение, имеющее вид A x + B y + C z + D = 0 , определяет плоскость в трехмерном пространстве

Уравнение, имеющее вид A x + B y + C z + D = 0 носит название общего уравнения плоскости. Если не придавать числам А, В, С и D конкретных значений, то мы получаем уравнение плоскости в общем виде.

Важно понимать, что уравнение λ · A x + λ · B y + λ · C z + λ · D = 0 , будет точно так же определять плоскость. В уравнении λ - это некоторое отличное от нуля действительное число. Это значит, что равенства A x + B y + C z + D = 0 и λ · A x + λ · B y + λ · C z + λ · D = 0 равнозначны.

Пример 1

Общим уравнениям плоскости x - 2 · y + 3 · z - 7 = 0 и - 2 · x + 4 · y - 2 3 · z + 14 = 0 удовлетворяют координаты одних и тех же точек, расположенных в трехмерном пространстве. Это значит, что они задают одну и ту же плоскость.

Дадим пояснения к рассмотренной выше теореме. Плоскость и ее уравнение неразделимы, так как каждому уравнению A x + B y + C z + D = 0 соответствует плоскость в заданной прямоугольной системе координат, а каждой плоскости, расположенной в трехмерном пространстве, соответствует ее уравнение вида A x + B y + C z + D = 0 .

Уравнение плоскости A x + B y + C z + D = 0 может быть полным и неполным. Все коэффициенты А, B , С и D в полном уравнении отличны от нуля. В противном случае, общее уравнение плоскости считается неполным.

Плоскости, которые задаются неполными уравнениями, могут быть параллельны координатным осям, проходить через оси координат, совпадать с координатными плоскостями или располагаться параллельно им, проходить через начало координат.

Пример 2

Рассмотрим положение в пространстве плоскости, заданной уравнением 4 · y - 5 · z + 1 = 0 .

Она параллельна оси абсцисс и располагается перпендикулярно по отношению к плоскости O y z . Уравнение z = 0 определяет координатную плоскость O y z , а общее уравнение плоскости вида 3 · x - y + 2 · z = 0 соответствует плоскости, которая проходит через начало координат.

Важное уточнение: коэффициенты А, В и С в общем уравнении плоскости представляют собой координаты нормального вектора плоскости.

Когда говорят об уравнении плоскости, то подразумевают общее уравнение плоскости. Все виды уравнений плоскости, которые мы разберем в следующем разделе статьи, получают из общего уравнения плоскости.

Нормальное уравнение плоскости

Нормальное уравнение плоскости – это общее уравнение плоскости вида A x + B y + C z + D = 0 , которое удовлетворяет следующим условиям: длина вектора n → = (A , B , C) равна единице, т.е. n → = A 2 + B 2 + C 2 = 1 , а D ≤ 0 .

Также запись нормального уравнения плоскости может иметь следующий вид cos α · x + cos β · y + cos γ · z - p = 0 , где p – это неотрицательное число, которое равно расстоянию от начала координат до плоскости, а cos α , cos β , cos γ - это направляющие косинусы нормального вектора данной плоскости единичной длины.

n → = (cos α , cos β , cos γ) , n → = cos 2 α + cos 2 β + cos 2 γ = 1

То есть, согласно нормальному уравнению плоскости, плоскость в прямоугольной системе координат O х у z удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости n → = (cos α , cos β , cos γ) . Если p равно нулю, то плоскость проходит через начало координат.

Пример 3

Плоскость задана общим уравнением плоскости вида - 1 4 · x - 3 4 · y + 6 4 · z - 7 = 0 . D = - 7 ≤ 0 , нормальный вектор этой плоскости n → = - 1 4 , - 3 4 , 6 4 имеет длину, равную единице, так как n → = - 1 4 2 + - 3 4 2 + 6 4 = 1 . Соответственно, это общее уравнение плоскости является нормальным уравнением плоскости.

Для более детального изучения нормального уравнения плоскости мы рекомендуем перейти в соответствующий раздел. В теме приведены разборы задач и характерные примеры, а также способы приведения общего уравнения плоскости к нормальному виду.

Плоскость отсекает на координатных осях O х, O у и O z отрезки определенной длины. Длины отрезков задаются отличными от нуля действительными числами a , b и с. Уравнение плоскости в отрезках имеет вид x a + y b + z c = 1 . Знак чисел а, b и с показывает, в каком направлении от нулевого значения следует откладывать отрезки на координатных осях.

Пример 4

Построим в прямоугольной системе координат плоскость, которая задана уравнением формулы плоскости в отрезках x - 5 + y - 4 + z 4 = 1 .

Точки удалены от начала координат в отрицательном направлении на 5 единиц по оси абсцисс, на 4 единицы в отрицательном направлении по оси ординат и на 4 единицы в положительном направлении по оси аппликат. Отмечаем точки и соединяем их прямыми линиями.

Плоскость полученного треугольника является плоскостью, соответствующей уравнению плоскости в отрезках, имеющего вид x - 5 + y - 4 + z 4 = 1 .

Более подробно информация об уравнении плоскости в отрезках, приведении уравнения плоскости в отрезках к общему уравнению плоскости размещена в отдельной статье. Там же приведен ряд решений задач и примеров по теме.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах , кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости . Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения : плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве . Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа :

  • Как составить уравнение плоскости по точке и двум векторам?
  • Как составить уравнение плоскости по точке и вектору нормали?

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов ). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости ?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: уравнение плоскости проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Линейные неравенства в пространстве

Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости , поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства . Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока , наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:

Можно задавать разными способами (одной точкой и вектором, двумя точками и вектором, тремя точками и др.). Именно с учетом этого уравнение плоскости может иметь различные виды. Также при соблюдении определенных условий плоскости могут быть параллельными, перпендикулярными, пересекающимися и т.д. Об этом и поговорим в данной статье. Мы научимся составлять общее уравнение плоскости и не только.

Нормальный вид уравнения

Допустим, есть пространство R 3 , которое имеет прямоугольную координатную систему XYZ. Зададим вектор α, который будет выпущен из начальной точки О. Через конец вектора α проведем плоскость П, которая будет ему перпендикулярна.

Обозначим на П произвольную точку Q=(х,у,z). Радиус-вектор точки Q подпишем буквой р. При этом длина вектора α равняется р=IαI и Ʋ=(cosα,cosβ,cosγ).

Это единичный вектор, который направлен в сторону, как и вектор α. α, β и γ - это углы, которые образуются между вектором Ʋ и положительными направлениями осей пространства х, у, z соответственно. Проекция какой-либо точки QϵП на вектор Ʋ является постоянной величиной, которая равна р: (р,Ʋ) = р(р≥0).

Указанное уравнение имеет смысл, когда р=0. Единственное, плоскость П в этом случае будет пересекать точку О (α=0), которая является началом координат, и единичный вектор Ʋ, выпущенный из точки О, будет перпендикулярен к П, несмотря на его направление, что означает, что вектор Ʋ определяется с точностью до знака. Предыдущее уравнение является уравнением нашей плоскости П, выраженным в векторной форме. А вот в координатах его вид будет таким:

Р здесь больше или равно 0. Мы нашли уравнение плоскости в пространстве в нормальном виде.

Общее уравнение

Если уравнение в координатах умножим на любое число, которое не равно нулю, получим уравнение, эквивалентное данному, определяющее ту самую плоскость. Оно будет иметь такой вид:

Здесь А, В, С - это числа, одновременно отличные от нуля. Это уравнение именуется как уравнение плоскости общего вида.

Уравнения плоскостей. Частные случаи

Уравнение в общем виде может видоизменяться при наличии дополнительных условий. Рассмотрим некоторые из них.

Предположим, что коэффициент А равен 0. Это означает, что данная плоскость параллельна заданной оси Ох. В этом случае вид уравнения изменится: Ву+Cz+D=0.

Аналогично вид уравнения будет изменяться и при следующих условиях:

  • Во-первых, если В=0, то уравнение изменится на Ах+Cz+D=0, что будет свидетельствовать о параллельности к оси Оу.
  • Во-вторых, если С=0, то уравнение преобразуется в Ах+Ву+D=0, что будет говорить о параллельности к заданной оси Oz.
  • В-третьих, если D=0, уравнение будет выглядеть как Ах+Ву+Cz=0, что будет означать, что плоскость пересекает О (начало координат).
  • В-четвертых, если A=B=0, то уравнение изменится на Cz+D=0, что будет доказывать параллельность к Oxy.
  • В-пятых, если B=C=0, то уравнение станет Ах+D=0, а это означает, что плоскость к Oyz параллельна.
  • В-шестых, если A=C=0, то уравнение приобретет вид Ву+D=0, то есть будет сообщать о параллельности к Oxz.

Вид уравнения в отрезках

В случае когда числа А, В, С, D отличны от нуля, вид уравнения (0) может быть следующим:

х/а + у/b + z/с = 1,

в котором а = -D/А, b = -D/В, с = -D/С.

Получаем в итоге Стоит отметить, что данная плоскость будет пересекать ось Ох в точке с координатами (а,0,0), Оу - (0,b,0), а Oz - (0,0,с).

С учетом уравнения х/а + у/b + z/с = 1 нетрудно визуально представить размещение плоскости относительно заданной координатной системы.

Координаты нормального вектора

Нормальный вектор n к плоскости П имеет координаты, которые являются коэффициентами общего уравнения данной плоскости, то есть n (А,В,С).

Для того чтобы определить координаты нормали n, достаточно знать общее уравнение заданной плоскости.

При использовании уравнения в отрезках, которое имеет вид х/а + у/b + z/с = 1, как и при использовании общего уравнения, можно записать координаты любого нормального вектора заданной плоскости: (1/а + 1/b + 1/с).

Стоит отметить, что нормальный вектор помогает решить разнообразные задачи. К самым распространенным относятся задачи, заключающиеся в доказательстве перпендикулярности или параллельности плоскостей, задачи по нахождению углов между плоскостями или углов между плоскостями и прямыми.

Вид уравнения плоскости согласно координатам точки и нормального вектора

Ненулевой вектор n, перпендикулярный заданной плоскости, называют нормальным (нормалью) для заданной плоскости.

Предположим, что в координатном пространстве (прямоугольной координатной системе) Oxyz заданы:

  • точка Мₒ с координатами (хₒ,уₒ,zₒ);
  • нулевой вектор n=А*i+В*j+С*k.

Нужно составить уравнение плоскости, которая будет проходить через точку Мₒ перпендикулярно нормали n.

В пространстве выберем любую произвольную точку и обозначим ее М (х у,z). Пускай радиус-вектор всякой точки М (х,у,z) будет r=х*i+у*j+z*k, а радиус-вектор точки Мₒ (хₒ,уₒ,zₒ) - rₒ=хₒ*i+уₒ*j+zₒ*k. Точка М будет принадлежать заданной плоскости, если вектор МₒМ будет перпендикулярен вектору n. Запишем условие ортогональности при помощи скалярного произведения:

[МₒМ, n] = 0.

Поскольку МₒМ = r-rₒ, векторное уравнение плоскости выглядеть будет так:

Данное уравнение может иметь и другую форму. Для этого используются свойства скалярного произведения, а преобразовывается левая сторона уравнения. = - . Если обозначить как с, то получится следующее уравнение: - с = 0 или = с, которое выражает постоянство проекций на нормальный вектор радиус-векторов заданных точек, которые принадлежат плоскости.

Теперь можно получить координатный вид записи векторного уравнения нашей плоскости = 0. Поскольку r-rₒ = (х-хₒ)*i + (у-уₒ)*j + (z-zₒ)*k, а n = А*i+В*j+С*k, мы имеем:

Выходит, у нас образовывается уравнение плоскости, проходящей через точку перпендикулярно нормали n:

А*(х- хₒ)+В*(у- уₒ)С*(z-zₒ)=0.

Вид уравнения плоскости согласно координатам двух точек и вектора, коллинеарного плоскости

Зададим две произвольные точки М′ (х′,у′,z′) и М″ (х″,у″,z″), а также вектор а (а′,а″,а‴).

Теперь мы сможем составить уравнение заданной плоскости, которая будет проходить через имеющиеся точки М′ и М″, а также всякую точку М с координатами (х,у,z) параллельно заданному вектору а.

При этом векторы М′М={х-х′;у-у′;z-z′} и М″М={х″-х′;у″-у′;z″-z′} должны быть компланарными с вектором а=(а′,а″,а‴), а это значит, что (М′М, М″М, а)=0.

Итак, наше уравнение плоскости в пространстве будет выглядеть так:

Вид уравнения плоскости, пересекающей три точки

Допустим, у нас есть три точки: (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴), которые не принадлежат одной прямой. Необходимо написать уравнение плоскости, проходящей через заданные три точки. Теория геометрии утверждает, что такого рода плоскость действительно существует, вот только она единственная и неповторимая. Поскольку эта плоскость пересекает точку (х′,у′,z′), вид ее уравнения будет следующим:

Здесь А, В, С отличные от нуля одновременно. Также заданная плоскость пересекает еще две точки: (х″,у″,z″) и (х‴,у‴,z‴). В связи с этим должны выполняться такого рода условия:

Сейчас мы можем составить однородную систему с неизвестными u, v, w:

В нашем случае х,у или z выступает произвольной точкой, которая удовлетворяет уравнение (1). Учитывая уравнение (1) и систему из уравнений (2) и (3), системе уравнений, указанной на рисунке выше, удовлетворяет вектор N (А,В,С), который является нетривиальным. Именно потому определитель данной системы равняется нулю.

Уравнение (1), которое у нас получилось, это и есть уравнение плоскости. Через 3 точки она точно проходит, и это легко проверить. Для этого нужно разложить наш определитель по элементам, находящимся в первой строке. Из существующих свойств определителя вытекает, что наша плоскость одновременно пересекает три изначально заданные точки (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴). То есть мы решили поставленную перед нами задачу.

Двухгранный угол между плоскостями

Двухгранный угол представляет собой пространственную геометрическую фигуру, образованную двумя полуплоскостями, которые исходят из одной прямой. Иными словами, это часть пространства, которая ограничивается данными полуплоскостями.

Допустим, у нас имеются две плоскости со следующими уравнениями:

Нам известно, что векторы N=(А,В,С) и N¹=(А¹,В¹,С¹) перпендикулярны согласно заданным плоскостям. В связи с этим угол φ меж векторами N и N¹ равняется углу (двухгранному), который находится между этими плоскостями. Скалярное произведение имеет вид:

NN¹=|N||N¹|cos φ,

именно потому

cosφ= NN¹/|N||N¹|=(АА¹+ВВ¹+СС¹)/((√(А²+В²+С²))*(√(А¹)²+(В¹)²+(С¹)²)).

Достаточно учесть, что 0≤φ≤π.

На самом деле две плоскости, которые пересекаются, образуют два угла (двухгранных): φ 1 и φ 2 . Сумма их равна π (φ 1 + φ 2 = π). Что касается их косинусов, то их абсолютные величины равны, но различаются они знаками, то есть cos φ 1 =-cos φ 2 . Если в уравнении (0) заменить А, В и С на числа -А, -В и -С соответственно, то уравнение, которое мы получим, будет определять эту же плоскость, единственное, угол φ в уравнении cos φ= NN 1 /|N||N 1 | будет заменен на π-φ.

Уравнение перпендикулярной плоскости

Перпендикулярными называются плоскости, между которыми угол равен 90 градусов. Используя материал, изложенный выше, мы можем найти уравнение плоскости, перпендикулярной другой. Допустим, у нас имеются две плоскости: Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D=0. Мы можем утверждать, что перпендикулярными они будут, если cosφ=0. Это значит, что NN¹=АА¹+ВВ¹+СС¹=0.

Уравнение параллельной плоскости

Параллельными называются две плоскости, которые не содержат общих точек.

Условие (их уравнения те же, что и в предыдущем пункте) заключается в том, что векторы N и N¹, которые к ним перпендикулярны, коллинеарные. А это значит, что выполняются следующие условия пропорциональности:

А/А¹=В/В¹=С/С¹.

Если условия пропорциональности являются расширенными - А/А¹=В/В¹=С/С¹=DD¹,

это свидетельствует о том, что данные плоскости совпадают. А это значит, что уравнения Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D¹=0 описывают одну плоскость.

Расстояние до плоскости от точки

Допустим, у нас есть плоскость П, которая задана уравнением (0). Необходимо найти до нее расстояние от точки с координатами (хₒ,уₒ,zₒ)=Qₒ. Чтобы это сделать, нужно привести уравнение плоскости П в нормальный вид:

(ρ,v)=р (р≥0).

В данном случае ρ (х,у,z) является радиус-вектором нашей точки Q, расположенной на П, р - это длина перпендикуляра П, который был выпущен из нулевой точки, v - это единичный вектор, который расположен в направлении а.

Разница ρ-ρº радиус-вектора какой-нибудь точки Q=(х,у,z), принадлежащий П, а также радиус-вектора заданной точки Q 0 =(хₒ,уₒ,zₒ) является таким вектором, абсолютная величина проекции которого на v равняется расстоянию d, которое нужно найти от Q 0 =(хₒ,уₒ,zₒ) до П:

D=|(ρ-ρ 0 ,v)|, но

(ρ-ρ 0 ,v)= (ρ,v)-(ρ 0 ,v) =р-(ρ 0 ,v).

Вот и получается,

d=|(ρ 0 ,v)-р|.

Таким образом, мы найдем абсолютное значение полученного выражения, то есть искомое d.

Используя язык параметров, получаем очевидное:

d=|Ахₒ+Вуₒ+Czₒ|/√(А²+В²+С²).

Если заданная точка Q 0 находится по другую сторону от плоскости П, как и начало координат, то между вектором ρ-ρ 0 и v находится следовательно:

d=-(ρ-ρ 0 ,v)=(ρ 0 ,v)-р>0.

В случае когда точка Q 0 совместно с началом координат располагается по одну и ту же сторону от П, то создаваемый угол острый, то есть:

d=(ρ-ρ 0 ,v)=р - (ρ 0 , v)>0.

В итоге получается, что в первом случае (ρ 0 ,v)>р, во втором (ρ 0 ,v)<р.

Касательная плоскость и ее уравнение

Касающаяся плоскость к поверхности в точке касания Мº - это плоскость, содержащая все возможные касательные к кривым, проведенным через эту точку на поверхности.

При таком виде уравнения поверхности F(х,у,z)=0 уравнение касательной плоскости в касательной точке Мº(хº,уº,zº) будет выглядеть так:

F х (хº,уº,zº)(х- хº)+ F х (хº, уº, zº)(у- уº)+ F х (хº, уº,zº)(z-zº)=0.

Если задать поверхность в явной форме z=f (х,у), то касательная плоскость будет описана уравнением:

z-zº =f(хº, уº)(х- хº)+f(хº, уº)(у- уº).

Пересечение двух плоскостей

В расположена система координат (прямоугольная) Oxyz, даны две плоскости П′ и П″, которые пересекаются и не совпадают. Поскольку любая плоскость, находящаяся в прямоугольной координатной системе, определяется общим уравнением, будем полагать, что П′ и П″ задаются уравнениями А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. В таком случае имеем нормаль n′ (А′,В′,С′) плоскости П′ и нормаль n″ (А″,В″,С″) плоскости П″. Поскольку наши плоскости не параллельны и не совпадают, то эти векторы являются не коллинеарными. Используя язык математики, мы данное условие можем записать так: n′≠ n″ ↔ (А′,В′,С′) ≠ (λ*А″,λ*В″,λ*С″), λϵR. Пускай прямая, которая лежит на пересечении П′ и П″, будет обозначаться буквой а, в этом случае а = П′ ∩ П″.

а - это прямая, состоящая из множества всех точек (общих) плоскостей П′ и П″. Это значит, что координаты любой точки, принадлежащей прямой а, должны одновременно удовлетворять уравнения А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. Значит, координаты точки будут частным решением следующей системы уравнений:

В итоге получается, что решение (общее) этой системы уравнений будет определять координаты каждой из точек прямой, которая будет выступать точкой пересечения П′ и П″, и определять прямую а в координатной системе Oxyz (прямоугольной) в пространстве.

Раздел 5. Аналитическая геометрия.

1. Различные уравнения плоскости в пространстве

2. Частные случаи общего уравнения плоскости

3. Взаимное расположение двух плоскостей

4. Расстояние от точки до плоскости

5. Различные уравнения прямой в пространстве

6. Взаимное расположение двух прямых в пространстве

7. Взаимное расположение прямой и плоскости в пространстве

8. Различные уравнения прямой линии на плоскости

9. Геометрическая задача линейного программирования

Различные уравнения плоскости в пространстве.

В предыдущих параграфах говорилось о том, что каждой точке пространства ставится в соответствие упорядоченный набор чисел – её координаты. Естественно предположить, что если точки, обнаруживая некоторую закономерность, «выстраиваются» в виде некоторой линии или поверхности, то и их координаты также будут демонстрировать эту закономерность, удовлетворяя, как правило, некоторому уравнению, которое и называется уравнением этой линии, или поверхности.

Рассмотрим сначала пространство R 3 – реальное трёхмерное пространство (в котором мы живём). Простейшей поверхностью в пространстве является плоскость. Плоскость может быть задана различными способами, этим способам соответствуют различные формы уравнений этой плоскости. В частности, плоскость вполне

Определена, если известна какая-нибудь

M
точка М 0 , лежащая на этой плоскости

(она называется опорной ), и какой-нибудь

вектор, от которого требуется лишь одно

Рис.1 – он должен быть перпендикулярен

плоскости. Такой вектор называется вектором нормали и обычно обозначается (см. рис. 1).

Составить уравнение плоскости – значит охарактеризовать некоторым уравнением все точки плоскости. Для этого берём из этого бесчисленного множества точек любую (так сказать, представителя этого множества) и составляем для неё (т.е. для её координат) на основе замеченной закономерности уравнение. Поскольку точка была любой, то это уравнение будет справедливым и для всех точек плоскости.



Возьмём произвольную точку М (см. рис.1). Теперь образуем вектор . Ясно, что . Воспользуемся условием перпендикулярности двух векторов – их скалярное произведение равно нулю:

(1)

Уравнение (1) называют векторным уравнением плоскости. Это уравнение справедливо в любой системе координат.

Рассмотрим теперь уравнение (1) в декартовой системе координат. Пусть точка М 0 имеет координаты , координаты вектора принято обозначать: . Т.к. точка М – произвольная, её координаты: , следовательно, . Тогда формула (1) примет вид

его будем называть уравнением плоскости с опорной точкой и вектором нормали. Раскроем скобки в уравнении (2):

Обозначив, получим

Уравнение (3) называется общим уравнением плоскости. Отсюда видно, что всякое уравнение первой степени представляет собой плоскость.

Хорошо известно, что три точки однозначно определяют плоскость.

М 1
М
М 2 Пусть точки М 1 , М 2 , М 3 образуют

некоторую плоскость (т.е. не лежат

М 3 на одной прямой). Составим

уравнение этой плоскости

Рис. 2 (см. рис.2). Для этого возьмём

произвольную точку М, лежащую в плоскости и рассмотрим три вектора Поскольку М принадлежит плоскости, векторы эти компланарны, а условием компланарности трёх векторов является равенство нулю их смешанного произведения:

Уравнение (4) – ещё одно векторное уравнение плоскости, справедливое для любой системы координат. В декартовой системе координат пусть , ; тогда

И уравнение (4) выглядит следующим образом:

X – x 1 y – y 1 z – z 1

x 2 – x 1 y 2 – y 1 z 2 – z 1 = 0 (5)

x 3 – x 1 y 3 – y 1 z 3 – z 1

Уравнение (5) называют уравнением плоскости, проходящей через три точки.

Пример 1 . Написать уравнение плоскости, проходящей через точку М 0 (1,2,-3) перпендикулярно вектору

Решение . Воспользовавшись уравнением (2), получим уравнение плоскости

Заметим, что в уравнении могут отсутствовать некоторые переменные.

Пример 2 . Написать уравнение плоскости, проходящей через начало координат перпендикулярно вектору

Решение. Воспользуемся уравнением (2): Заметим, что в уравнении отсутствует свободный член (точнее, свободный член равен нулю).

Пример 3 . Написать уравнение плоскости, проходящей через три точки А(1,1,3), В(0,2,3), С(1,5,7).

Решение. Воспользуемся уравнением (5):

Вычислим определитель разложением по первой строке:

5.2. Частные случаи общего уравнения плоскости.

Возьмём общее уравнение плоскости и рассмотрим несколько его частных случаев.

1) D = 0, т.е. уравнение плоскости имеет вид

(6)

Ясно, что этому уравнению всегда удовлетворяет точка О(0,0,0) – начало координат. Итак, если в уравнении плоскости свободный член равен нулю, то плоскость проходит через начало координат.

2) С = 0, т.е. уравнение плоскости имеет вид

(7)

Это означает, что вектор нормали имеет следующие координаты Нетрудно увидеть, что - вектор нормали перпендикулярен базисному вектору , т.е. оси oz, т.к. их скалярное произведение равно нулю: Теперь понятно,

что плоскость параллельна оси oz (рис.3).


Аналогично, если В = 0, то плоскость параллельна оси ОУ; если А = 0, то плоскость параллельна оси ОХ.

Итак, если в уравнении плоскости равен нулю коэффициент при некотором неизвестном, то плоскость параллельна одноименной оси координат.

3)Пусть равны нулю два параметра – свободный член и один коэффициент, например, С = = 0. Уравнение плоскости имеет вид

(8)

Из предыдущего ясно, что С =0 означает, что плоскость параллельна оси oz, а = 0 означает, что плоскость проходит через начало координат. Объединяя оба замечания, получаем, что плоскость проходит через ось oz.

Общий вывод: если в уравнении равны нулю свободный член и коэффициент при каком-нибудь неизвестном, то плоскость проходит через соответствующую ось координат.

4) Пусть равны нулю два коэффициента при неизвестных, например А = В =0, т.е. уравнение плоскости имеет вид

. (9)

Учитываем предыдущие рассуждения: если А = 0, то плоскость параллельна оси ОХ; если В = 0, то плоскость параллельна оси ОУ, следовательно, если

А = В = 0, то плоскость параллельна осям ОХ и ОУ, т.е. перпендикулярна оси

Z ОZ и отсекает на этой оси отрезок,

D/С равный – D/С (см. рис.4).

Отсюда следует:

х = 0 – уравнение координатной плоскости yoz,

у = 0 – уравнение координатной плоскости хоz,

z = 0 – уравнение координатной плоскости уоz.

5.3. Взаимное расположение двух плоскостей.

Взаимное расположение двух плоскостей определяется с помощью угла между ними (см. рис.5. Вообще говоря, можно увидеть два угла,

которые плоскости образуют

между собой – угол и

Дополнительный угол .

Один из них – острый, другой

тупой (в случае перпендикулярности

Плоскостей оба угла совпадают).

Под углом между двумя плоскостями понимается всегда острый угол . Этот угол вычисляется с помощью угла между векторами нормалей (через скалярное произведение векторов нормалей):

(10)

На рис. 6 угол . Однако, в качестве вектора нормали к плоскости можно взять вектор . Тогда формула (10) даст косинус угла . Косинусы углов и будут отличаться лишь знаком. Поэтому, если мы хотим получить острый угол, то в формуле (10) скалярное произведение надо взять по абсолютной величине (по модулю):

(11)

Формулу (11) легко переписать в координатной форме. Пусть плоскости задаются уравнениями и . Таким образом, имеем два вектора нормалей: и По формуле (11) получим:

(12)

Теперь нетрудно получить два крайних случая: перпендикулярность и параллельность плоскостей. Если плоскости перпендикулярны, то

условие перпендикулярности плоскостей. Если плоскости параллельны, то векторы нормалей коллинеарны: , т.е. их координаты пропорциональны:

(14)

условие параллельности плоскостей.

Пример 4 . Даны три плоскости

Найти углы между этими плоскостями.

Решение . Имеем три вектора нормалей Нетрудно заметить, что , т.е. плоскости параллельны. Найдём угол между плоскостями

5.4. Расстояние от точки до плоскости.

Пусть требуется найти расстояние от

точки до плоскости.

Уравнение плоскости возьмём в виде

Уравнения с опорной точкой

И вектором нормали , т.е.

Как известно, расстояние равно длине перпендикуляра (рис. 5). Для наглядности начало вектора поместим в точку . Построим прямоугольник и увидим, что - проекции вектора на вектор нормали (см. рис. 5).

Вспоминаем определение скалярного произведения векторов:

(15)

Вновь замечаем, что на рис. 5 векторы образуют острый угол и потому является положительным числом. Если в качестве вектора нормали взять противоположный вектор (см. рис.5), то формула (15) даст отрицательное число, но расстояние есть число положительное, поэтому для расстояния d от точки до плоскости надо применять формулу

Распишем формулу (16) в координатной форме:

Скобку мы ранее обозначали буквой D. Поэтому получаем формулу

, - (17)

для нахождения расстояния от точки до плоскости заданной общим уравнением, надо в общее уравнение плоскости подставить координаты точки , поделить на длину вектора нормали и взять по модулю.

Пример 5 . Найти расстояние от точки до плоскости .

Решение . Воспользуемся формулой (17):

5.5. Различные уравнения прямой в пространстве.

Прямую линию в пространстве можно

Задать с помощью опорной точки , (т.е.

М точка лежит на прямой) и вектора , от

рис. 6 которого требуется одно – он должен

быть параллелен прямой. Такой вектор называется направляющим вектором прямой (см. рис. 6).

Для составления уравнения возьмём произвольную точку М, принадлежащую прямой, - получим вектор . Векторы и . – коллинеарны (параллельны), следовательно имеет место соотношение

где - некоторое число. Уравнение (18) называется векторным уравнением прямой. Оно будет справедливо в любом пространстве и не зависит от выбора системы координат.

Обозначим соответствующие координаты:

Тогда уравнение (18) имеет вид: или

Это обычно записывают в следующих формах:

(19)

Уравнения (19) называются параметрическими уравнениями прямой в пространстве ( - параметр).

Если из этих уравнений исключить параметр , то получим:

(20)

это так называемые канонические уравнения прямой в пространстве. От канонических легко перейти к параметрическим уравнениям прямой – достаточно все уравнения (20) приравнять параметру .

Важный для практики случай, когда прямая задаётся двумя точками , легко сводится к формуле (20), - стоит лишь заметить, что в качестве направляющего вектора можно взять вектор , а опорной точкой можно считать любую из них. Пусть тогда и опорной точкой возьмём , тогда из формулы (20) имеем:

(21)

Это уравнение называется уравнением прямой, проходящей через две точки.

5.6. Взаимное расположение двух прямых в пространстве.

Две прямые в пространстве могут

пересекаться, быть параллельными и

Скрещивающимися.

Пусть даны канонические уравнения двух прямых т.е. с опорными точками и направляющими векторами = .

Если т.е. , то прямые параллельны и даже могут совпадать. Подставим координаты опорной точки в уравнение прямой (или наоборот). Если точка лежит на прямой , то прямые совпадают, в противном случае – параллельны.

Пусть теперь т.е. векторы не параллельны (не коллинеарны). Тогда прямые могут пересекаться или скрещиваться. Как различить эти случаи? Делается это с помощью вектора (см. рис. 7). Ясно, что если прямые пересекаются, то векторы находятся в одной плоскости (точнее, они параллельны одной плоскости – компланарны). Условием компланарности векторов является равенство нулю их смешанного произведения:

(22)

Итак, если и выполняется (22), то прямые пересекаются; в случае не выполнения равенства (22) прямые скрещиваются.

Заметим, что во всех рассмотренных случаях взаимного расположения прямых можно вычислять угол между прямыми. Угол между прямыми определяется с помощью скалярного произведения их направляющих векторов:

(23)

Числитель взят по модулю для того, чтобы (как и для плоскостей) угол получался острым (в крайнем случае прямым).

Пример 6 . Выяснить взаимное расположение трёх прямых:

Решение . По данным уравнениям определяем опорные точки и направляющие векторы:

Легко заметить, что следовательно, прямые или параллельны или совпадают. Подставим координаты точки в уравнение - получили неверные равенства, следовательно, параллельны.

Возьмём и проверим условие (22):

, следовательно, скрещиваются.

Теперь проверим условие (22) для

следовательно, пересекаются.

5.7. Взаимное расположение прямой и плоскости в пространстве.

Прямая и плоскость в пространстве могут пересекаться и тогда возникают вопросы нахождения угла между прямой и плоскостью и координатах точки их пересечения. Прямая и плоскость могут быть параллельными, в частном случае, прямая лежит в плоскости. Рассмотрим все эти случаи.

Угол между прямой и плоскостью (см. рис. 8) определяется с

Помощью вектора нормали

Плоскости и направляющего вектора

Прямой: и направляющего вектора прямой что на плоскости (в двумерном направляющий вектор прямой, М (х, у) – произвольная точка прямой.Если в уравнении (32) раскрыть скобки и обозначить

уравнение прямой с опорной точкой и вектором нормали.

(36)

где общее уравнение прямой на плоскости.

Угол между двумя прямыми можно вычислять привычным для нас способом – с помощью скалярного произведения направляющих векторов прямых или их векторов нормали. Если две прямые заданы каноническими уравнениями

И т.е. направляющие векторы прямых, то (см. рис.10)

(37)