Общий вид уравнений тригонометрия. Более сложные тригонометрические уравнения

Концепция решения тригонометрических уравнений.

  • Для решения тригонометрического уравнения преобразуйте его в одно или несколько основных тригонометрических уравнений. Решение тригонометрического уравнения в конечном итоге сводится к решению четырех основных тригонометрических уравнений.
  • Решение основных тригонометрических уравнений.

    • Существуют 4 вида основных тригонометрических уравнений:
    • sin x = a; cos x = a
    • tg x = a; ctg x = a
    • Решение основных тригонометрических уравнений подразумевает рассмотрение различных положений «х» на единичной окружности, а также использование таблицы преобразования (или калькулятора).
    • Пример 1. sin x = 0,866. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = π/3. Единичная окружность дает еще один ответ: 2π/3. Запомните: все тригонометрические функции являются периодическими, то есть их значения повторяются. Например, периодичность sin x и cos x равна 2πn, а периодичность tg x и ctg x равна πn. Поэтому ответ записывается следующим образом:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Пример 2. соs х = -1/2. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = 2π/3. Единичная окружность дает еще один ответ: -2π/3.
    • x1 = 2π/3 + 2π; х2 = -2π/3 + 2π.
    • Пример 3. tg (x - π/4) = 0.
    • Ответ: х = π/4 + πn.
    • Пример 4. ctg 2x = 1,732.
    • Ответ: х = π/12 + πn.
  • Преобразования, используемые при решении тригонометрических уравнений.

    • Для преобразования тригонометрических уравнений используются алгебраические преобразования (разложение на множители, приведение однородных членов и т.д.) и тригонометрические тождества.
    • Пример 5. Используя тригонометрические тождества, уравнение sin x + sin 2x + sin 3x = 0 преобразуется в уравнение 4cos x*sin (3x/2)*cos (x/2) = 0. Таким образом, нужно решить следующие основные тригонометрические уравнения: cos x = 0; sin (3x/2) = 0; cos (x/2) = 0.
    • Нахождение углов по известным значениям функций.

      • Перед изучением методов решения тригонометрических уравнений вам необходимо научиться находить углы по известным значениям функций. Это можно сделать при помощи таблицы преобразования или калькулятора.
      • Пример: соs х = 0,732. Калькулятор даст ответ х = 42,95 градусов. Единичная окружность даст дополнительные углы, косинус которых также равен 0,732.
    • Отложите решение на единичной окружности.

      • Вы можете отложить решения тригонометрического уравнения на единичной окружности. Решения тригонометрического уравнения на единичной окружности представляют собой вершины правильного многоугольника.
      • Пример: Решения x = π/3 + πn/2 на единичной окружности представляют собой вершины квадрата.
      • Пример: Решения x = π/4 + πn/3 на единичной окружности представляют собой вершины правильного шестиугольника.
    • Методы решения тригонометрических уравнений.

      • Если данное тригонометрическое уравнение содержит только одну тригонометрическую функцию, решите это уравнение как основное тригонометрическое уравнение. Если данное уравнение включает две или более тригонометрические функции, то существуют 2 метода решения такого уравнения (в зависимости от возможности его преобразования).
        • Метод 1.
      • Преобразуйте данное уравнение в уравнение вида: f(x)*g(x)*h(x) = 0, где f(x), g(x), h(x) - основные тригонометрические уравнения.
      • Пример 6. 2cos x + sin 2x = 0. (0 < x < 2π)
      • Решение. Используя формулу двойного угла sin 2x = 2*sin х*соs х, замените sin 2x.
      • 2соs х + 2*sin х*соs х = 2cos х*(sin х + 1) = 0. Теперь решите два основных тригонометрических уравнения: соs х = 0 и (sin х + 1) = 0.
      • Пример 7. cos x + cos 2x + cos 3x = 0. (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: cos 2x(2cos x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2cos x + 1) = 0.
      • Пример 8. sin x - sin 3x = cos 2x . (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: -cos 2x*(2sin x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2sin x + 1) = 0.
        • Метод 2.
      • Преобразуйте данное тригонометрическое уравнение в уравнение, содержащее только одну тригонометрическую функцию. Затем замените эту тригонометрическую функцию на некоторую неизвестную, например, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t и т.д.).
      • Пример 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0 < x < 2π).
      • Решение. В данном уравнении замените (cos^2 x) на (1 - sin^2 x) (согласно тождеству). Преобразованное уравнение имеет вид:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Замените sin х на t. Теперь уравнение имеет вид: 5t^2 - 4t - 9 = 0. Это квадратное уравнение, имеющее два корня: t1 = -1 и t2 = 9/5. Второй корень t2 не удовлетворяет области значений функции (-1 < sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Пример 10. tg x + 2 tg^2 x = ctg x + 2
      • Решение. Замените tg x на t. Перепишите исходное уравнение в следующем виде: (2t + 1)(t^2 - 1) = 0. Теперь найдите t, а затем найдите х для t = tg х.
  • Урок комплексного применения знаний.

    Цели урока.

    1. Рассмотреть различные методы решения тригонометрических уравнений.
    2. Развитие творческих способностей учеников путем решения уравнений.
    3. Побуждение учеников к самоконтролю, взаимоконтролю, самоанализу своей учебной деятельности.

    Оборудование: экран, проектор, справочный материал.

    Ход урока

    Вводная беседа.

    Основным методом решения тригонометрических уравнений является сведения их простейшим. При этом применяются обычные способы, например, разложения на множители, а также приемы, используемые только для решения тригонометрических уравнений. Этих приемов довольно много, например, различные тригонометрические подстановки, преобразования углов, преобразования тригонометрических функций. Беспорядочное применение каких-либо тригонометрических преобразований обычно не упрощает уравнение, а катастрофически его усложняет. Чтобы выработать в общих чертах план решения уравнения, наметить путь сведения уравнения к простейшему, нужно в первую очередь проанализировать углы – аргументы тригонометрических функций, входящих в уравнение.

    Сегодня мы поговорим о методах решения тригонометрических уравнений. Правильно выбранный метод часто позволяет существенно упростить решение, поэтому все изученные нами методы всегда нужно держать в зоне своего внимания, чтобы решать тригонометрические уравнения наиболее подходящим методом.

    II. (С помощью проектора повторяем методы решения уравнений.)

    1. Метод приведения тригонометрического уравнения к алгебраическому.

    Необходимо выразить все тригонометрические функции через одну, с одним и тем же аргументом. Это можно сделать с помощью основного тригонометрического тождества и его следствий. Получим уравнение с одной тригонометрической функцией. Приняв ее за новую неизвестную, получим алгебраическое уравнение. Находим его корни и возвращаемся к старой неизвестной, решая простейшие тригонометрические уравнения.

    2. Метод разложения на множители.

    Для изменения углов часто бывают полезны формулы приведения, суммы и разности аргументов, а также формулы преобразования суммы (разности) тригонометрических функций в произведение и наоборот.

    sin x + sin 3x = sin 2x + sin4x

    3. Метод введения дополнительного угла.

    4. Метод использования универсальной подстановки.

    Уравнения вида F(sinx, cosx, tgx) = 0 сводятся к алгебраическому при помощи универсальной тригонометрической подстановки

    Выразив синус, косинус и тангенс через тангенс половинного угла. Этот прием может привести к уравнению высокого порядка. Решение которого затруднительно.

    Более сложные тригонометрические уравнения

    Уравнения

    sin х = а ,
    cos х = а ,
    tg х = а ,
    ctg х = а

    являются простейшими тригонометрическими уравнениями. В этом параграфе на конкретных примерах мы рассмотрим более сложные тригонометрические уравнения. Их решение, как правило, сводится к решению простейших тригонометрических уравнений.

    Пример 1 . Решить уравнение

    sin 2х = cos х sin 2x .

    Перенося все члены этого уравнения в левую часть и разлагая полученное выражение на множители, получаем:

    sin 2х (1 - cos х ) = 0.

    Произведение двух выражений тогда и только тогда равно нулю, когда хотя бы один из сомножителей равен нулю, а другой принимает любое числовое значение, лишь бы он был определен.

    Если sin 2х = 0 , то 2х = nπ ; х = π / 2 n .

    Если же 1 - cos х = 0 , то cos х = 1; х = 2k π .

    Итак, мы получили две группы корней: х = π / 2 n ; х = 2k π . Втoрая группа корней, очевидно, содержится в первой, поскольку при n = 4k выражение х = π / 2 n обращается в
    х = 2k π .

    Поэтому ответ можно записать одной формулой: х = π / 2 n , где n -любое целое число.

    Заметим, что данное уравнение нельзя было решать путем сокращения на sin 2x . Действительно, после сокращения мы получили бы 1 - cos х = 0, откуда х = 2kπ . Таким образом, мы потеряли бы некоторые корни, например π / 2 , π , 3π / 2 .

    П р и м е р 2. Решить уравнение

    Дробь равна нулю лишь в том случае, когда ее числитель равен нулю.
    Поэтому sin 2х = 0 , откуда 2х = nπ ; х = π / 2 n .

    Из этих значений х нужно выбросить как посторонние те значения, при которых sin х обращается в нуль (дроби с нулевыми знаменателями не имеют смысла: деление на нуль не определено). Такими значениями являются числа, кратные π . В формуле
    х = π / 2 n они получаются при четных n . Следовательно, корнями данного уравнения будут числа

    х = π / 2 (2k + 1),

    где k - любое целое число.

    Пример 3 . Решить уравнение

    2 sin 2 х + 7 cos x - 5 = 0.

    Выразим sin 2 х через cos x : sin 2 х = 1 - cos 2 x . Тогда данное уравнение можно переписать в виде

    2 (1 - cos 2 x ) + 7 cos x - 5 = 0 , или

    2cos 2 x - 7 cos x + 3 = 0.

    Обозначая cos x через у , мы приходим к квадратному уравнению

    2у 2 - 7у + 3 = 0,

    корнями которого являются числа 1 / 2 и 3. Значит, либо cos x = 1 / 2 , либо cos х = 3. Однако последнее невозможно, поскольку косинус любого угла по абсолютной величине не превышает 1.

    Остается признать, что cos x = 1 / 2 , откуда

    x = ± 60° + 360° n .

    Пример 4 . Решить уравнение

    2 sin х + 3cos x = 6.

    Поскольку sin x и cos x по абсолютной величине не превышают 1, то выражение
    2 sin х + 3cos x не может принимать значений, больших, чем 5 . Поэтому данное уравнение не имеет корней.

    Пример 5 . Решить уравнение

    sin х + cos x = 1

    Возвысив обе части данного уравнения в квадрат, мы получим:

    sin 2 х + 2 sin x cos x + cos 2 x = 1,

    но sin 2 х + cos 2 x = 1 . Поэтому 2 sin x cos x = 0 . Если sin x = 0 , то х = n π ; если же
    cos x
    , то х = π / 2 + k π . Эти две группы решений можно записать одной формулой:

    х = π / 2 n

    Поскольку обе части данного уравнения мы возводили в квадрат,то не исключена возможность, что среди полученных нами корней имеются посторонние. Вот почему в этом примере, в отличие от всех предыдущих, необходимо сделать проверку. Все значения

    х = π / 2 n можно разбить на 4 группы

    1) х = 2k π .

    (n = 4k)

    2) х = π / 2 + 2k π .

    (n = 4k + 1)

    3) х = π + 2k π .

    (n = 4k + 2)

    4) х = 3π / 2 + 2k π .

    (n = 4k + 3)

    При х = 2kπ sin x + cos x = 0 + 1 = 1. Следовательно, х = 2kπ - корни данного уравнения.

    При х = π / 2 + 2kπ . sin x + cos x = 1 + 0 = 1 Значит, х = π / 2 + 2kπ - также корни данного уравнения.

    При х = π + 2kπ sin x + cos x = 0 - 1 = - 1. Поэтому значения х = π + 2kπ не являются корнями данного уравнения. Аналогично показывается, что х = 3π / 2 + 2kπ . не являются корнями.

    Таким образом, данное уравнение имеет следующие корни: х = 2kπ и х = π / 2 + 2mπ ., где k и m - любые целые числа.

    Урок и презентация на тему: "Решение простейших тригонометрических уравнений"

    Дополнительные материалы
    Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

    Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
    Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
    Программная среда "1С: Математический конструктор 6.1"

    Что будем изучать:
    1. Что такое тригонометрические уравнения?

    3. Два основных метода решения тригонометрических уравнений.
    4. Однородные тригонометрические уравнения.
    5. Примеры.

    Что такое тригонометрические уравнения?

    Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.

    Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.

    Повторим вид решения простейших тригонометрических уравнений:

    1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:

    X= ± arccos(a) + 2πk

    2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:

    3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk

    5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk

    Для всех формул k- целое число

    Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.

    Пример.

    Решить уравнения: а) sin(3x)= √3/2

    Решение:

    А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:

    Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.

    Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.

    Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,

    Тогда x= ((-1)^n)×π/9+ πn/3

    Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.

    Ещё примеры тригонометрических уравнений.

    Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3

    Решение:

    А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:

    X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk

    Ответ: x=5πk, где k – целое число.

    Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3

    3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

    Ответ: x=2π/9 + πk/3, где k – целое число.

    Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .

    Решение:

    Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk

    4x= ± π/4 + 2πk;

    X= ± π/16+ πk/2;

    Теперь давайте посмотрим какие корни попадут на наш отрезок. При k При k=0, x= π/16, мы попали в заданный отрезок .
    При к=1, x= π/16+ π/2=9π/16, опять попали.
    При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.

    Ответ: x= π/16, x= 9π/16

    Два основных метода решения.

    Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры.

    Решим уравнение:

    Решение:
    Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).

    В результате замены получим: t 2 + 2t -1 = 0

    Найдем корни квадратного уравнения: t=-1 и t=1/3

    Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.

    X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

    Ответ: x= -π/4+πk; x=arctg(1/3) + πk.

    Пример решения уравнения

    Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0

    Решение:

    Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1

    Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0

    2 cos 2 (x) - 3 cos(x) -2 = 0

    Введем замену t=cos(x): 2t 2 -3t - 2 = 0

    Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2

    Тогда cos(x)=2 и cos(x)=-1/2.

    Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.

    Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

    Ответ: x= ±2π/3 + 2πk

    Однородные тригонометрические уравнения.

    Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени.

    Уравнения вида

    однородными тригонометрическими уравнениями второй степени.

    Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x): Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
    Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.

    Решить уравнение:
    Пример: cos 2 (x) + sin(x) cos(x) = 0

    Решение:

    Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0

    Тогда нам надо решить два уравнения:

    Cos(x)=0 и cos(x)+sin(x)=0

    Cos(x)=0 при x= π/2 + πk;

    Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):

    1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

    Ответ: x= π/2 + πk и x= -π/4+πk

    Как решать однородные тригонометрические уравнения второй степени?
    Ребята, придерживайтесь этих правил всегда!

    1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде

    2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:


    Делаем замену переменной t=tg(x) получаем уравнение:

    Решить пример №:3

    Решить уравнение:
    Решение:

    Разделим обе части уравнения на косинус квадрат:

    Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0

    Найдем корни квадратного уравнения: t=-3 и t=1

    Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

    Tg(x)=1 => x= π/4+ πk

    Ответ: x=-arctg(3) + πk и x= π/4+ πk

    Решить пример №:4

    Решить уравнение:

    Решение:
    Преобразуем наше выражение:


    Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk

    Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk

    Решить пример №:5

    Решить уравнение:

    Решение:
    Преобразуем наше выражение:


    Введем замену tg(2x)=t:2 2 - 5t + 2 = 0

    Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2

    Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
    2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

    2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

    Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2

    Задачи для самостоятельного решения.

    1) Решить уравнение

    А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

    2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].

    3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0

    4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0

    5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

    6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.