Технология производства рельсов, их маркировка и приемка. Производство железнодорожных рельсов

Тендеры и заявки - Рельс примечание НКМК в регионе "Москва"

  • 29.03.2019 в 08:38 Предприятие ЕВРОЦЕМЕНТ груп приобретет:
    Рельс Р-2 в следующем объеме: 4 шт

    Пожелания заказчика: Просьба сформировать КП (счет) на: 1. Рельс Р-2 - 4 шт. 2. Стяжка С-1 – 3 шт. 3. Стяжка С-4 – 56 шт. 4. Накладка К-1 – 56 шт. 5. Подкладка К-2 – 28 шт. Объект: ПС 110 кВ, Ульяновска обл. ответить на заявку

  • 26.03.2019 в 11:38 Предприятие МОССТРОЙКРАН приобретет:
    Рельс Р-65 длина: новые длина 25 метров в следующем объеме: 15000 тн

    Пожелания заказчика: на новые рельсы Р-65 длина 25 метров-15000 тоннн ответить на заявку

  • 22.03.2019 в 16:54 Организация (контактное лицо: Алексей) приобретет:
    Рельс Р65 длина: 25 м. сталь: 1 группа износа, в следующем объеме: 70 шт
    ответить на заявку
  • 22.03.2019 в 15:34 Организация (контактное лицо: Валерий) желает приобрести:
    Рельс Р-50 1 гр. в следующем объеме: 38 тн
    ответить на заявку
  • 22.03.2019 в 15:13 Организация (контактное лицо: Андрей) приобретет:
    Рельс р65 в следующем объеме: 200 м/п

    Пожелания заказчика: рельсы р65. 200 м пути. Пермь. ответить на заявку

Объявления продать купить Рельс примечание НКМК в регионе "Москва"

    Реализую рельсы железнодорожные крановые Р 65 40т
    Продам рельсы железнодорожные Р 65 в отличном состоянии. Находятся на балансе организации. Общий объем - около 45 тонн. Находятся в Москве. Прямой владелец. Фото прилагаю. Оплата с НДС.

    Продам лом рельс 50000 тонн
    Продам лом рельса от 50000 тонн из Азии по 330$ cif lc

    Продаем рельсы Р-65 лежалые, б\у
    Продаем рельсы Р-65 Т0, 1 группы износа 4мм по цене 31500 руб/т 2010г. Лежалые рельсы Р-65 ГОСТ 8161-75 Т1 2016г по цене 71500 руб/т.

    Рельсы и рельсовые скрепления
    *Рельсы РП65, 12.50м, новые 55 500руб/тн; *Рельсы Р65, 1гр. мера 36 500руб/тн; *Рельсы Р65, 2гр. мера 32 500руб/тн; *Рельсы Р50, 1гр. 12.50м от 36 500руб/тн; *Подкладка КБ65 бу 58 000руб/тн *Болт закладной в сборе 98 500руб/тн; *Болт клеммный в сборе 99 500руб/тн; Цены на рельсы указаны с погрузкой...

    Прокладка ЦП 328 продам
    Продам прокладку резиновую ЦП 328 под подкладку КБ65 .В наличии большой объем.Фото по запросу.Звоните.

    Страница 2 из 10

    Назначение рельсов и требования, предъявляемые к ним

    Основной несущий элемент верхнего строения пути - рельсы . Они представляют собой стальные брусья специальных сечений, по которым движется подвижной состав. Стандартными и общепринятыми рельсами на всех дорогах мира являются рельсы широкоподошвенные.

    (рис. 1) состоит из трех основных частей:

    • головки;
    • подошвы;
    • шейки, соединяющей головку с подошвой.

    Рельсы являются главнейшим элементом верхнего строения пути. Они предназначены:

    • непосредственно воспринимать давления от колес подвижного состава и передавать эти давления нижележащим элементам верхнего строения пути;
    • направлять колеса подвижного состава при их движении;
    • на участках с автоблокировкой служить проводником сигнального тока, а при электротяге - обратного силового тока. Поэтому рельсовые нити должны обладать необходимой электропроводимостью.

    Основные требования к рельсам состоят в том, что они должны быть устойчивыми и прочными; обладать наибольшим сроком службы; обеспечивать безопасность движения поездов; быть удобными и недорогими в эксплуатации и изготовлении.

    Рис. 1 - Широкоподошвенный рельс

    Если более подробно, то назначение и экономические соображения определяют следующие требования к рельсу:

    1. Для обеспечения безопасности движения поездов, имеющих большие осевые нагрузки, с максимальными скоростями рельсы должны быть более тяжелыми. В то же время для экономии металла и удобства погрузки, выгрузки, смены эти же рельсы должны иметь рациональный и по возможности наименьший вес.
    2. Для лучшего сопротивления изгибу под подвижной нагрузкой рельсы должны быть достаточно жесткими (иметь наибольший момент сопротивления). В то же время во избежание жестких ударов колес о рельсы, могущих вызвать излом отдельных деталей ходовых частей подвижного состава, а также расплющивание и даже излом рельсов, необходимо, чтобы рельсы были достаточно гибкими.
    3. Для того чтобы рельсы от ударно-динамических воздействий колес подвижного состава не ломались, материал рельсов должен быть достаточно вязким. Ввиду же концентрированной передачи давлений от колес по очень небольшим площадкам в местах контакта колес рельсов требуется, чтобы металл рельсов не сминался, не истирался, дольше служил и был достаточно твердым.
    4. Для обеспечения достаточной силы сцепления между рельсами и движущими колесами локомотивов необходимо, чтобы поверхность катания рельсов была шероховатой. Для уменьшения же сопротивления движению остальных колес - вагонов, тендеров и поддерживающих колес локомотивов - необходимо, чтобы поверхность катания рельсов была гладкой;
    5. Для стандартизации элементов верхнего строения пути, приводящей к простоте и удешевлению их содержания, необходимо, чтобы число типов рельсов было наименьшее. Из интересов же экономии металла немыслимо, чтобы на всех линиях железных дорог независимо от грузонапряженности, осевых нагрузок и скоростей движения поездов укладывались рельсы одного типа. Число типов рельсов должно быть минимальным, но разумным.

    Таким образом, требования и условия, которым должны удовлетворять рельсы, являются исключительно важными, необходимыми и вместе с тем противоречивыми. Все это чрезвычайно усложняет решение рельсовой проблемы вообще. Ее решение представляет собой одну из важнейших задач транспортной науки и техники.

    Материал рельсов

    Современные рельсы прокатывают только из стальных слитков. Сталь изготовляют в конвертерах по способу Бессемера или в мартеновских печах. Бессемеровскую сталь получают в результате продувки расплавленного чугуна кислородом (15-18 мин). При этом выгорает углерод и часть примесей. Мартеновскую сталь варят из чугуна и стального лома в больших печах емкостью от 200 до 1500 тонн в течение нескольких часов. Эта сталь чище и менее хладноломка, чем бессемеровская. Рельсы тяжелых типов (Р65 и Р75) прокатывают только из мартеновской стали.

    Качество рельсовой стали определяется ее химическим составом, микро- и макроструктурой. Химический состав стали отечественных рельсов характеризуется добавками к железу в процентах (смотрите таблицу ниже).

    Тип рельса Марка стали Углерод Марганец Кремний Фосфор Сера Мышьяк Временное сопротивление, МПа (кгс/мм 2), не менее Относительное удлинение, %
    Р75(Р65) М-76 0,71-0,82 0,75-1,05 0,20-0,40 ≤0,035 ≤0,045 ≤0,15 885(90) 4
    Р50 М-75 0,69-0,80 0,75-1,05 0,20-0,40 ≤0,035 ≤0,045 ≤0,15 765(88) 5

    Углерод повышает твердость и износостойкость рельсовой стали. Однако чем выше содержание углерода, тем больше при прочих равных условиях хрупкость стали и затруднительней холодная правка рельсов. Поэтому требуется более равномерное распределение металла по сечению рельса, более жестко должен выдерживаться химический состав, особенно это касается фосфора и серы.

    Марганец повышает твердость и износоустойчивость стали, обеспечивая ей достаточную вязкость.

    Кремний улучшает качество стали, увеличивая твердость металла и его сопротивляемость износу.

    Фосфор и сера - вредные примеси, они придают стали хрупкость: при большом содержании фосфора рельсы получаются хладноломкими, при большом содержании серы - красноломкими.

    Мышьяк несколько увеличивает твердость и износостойкость рельсовой стали, но его излишек уменьшает ударную вязкость.

    Микроструктура устанавливается под микроскопом с увеличением в 100-200 раз. Компоненты обычной рельсовой стали - феррит, состоящий из свободного от углерода железа Fe, и перлит, который представляет собой смесь феррита и цементита.

    Изучение микроструктуры рельсовой стали показывает, что она приобретает способность к значительному сопротивлению износу и вязкость при сорбитовой структуре, которая получается в результате специальной термической обработки.

    В настоящее время наибольшее распространение получила объемная закалка рельсов. Она повышает пластичность и вязкость, увеличивает усталостную прочность и стойкость рельсов против образования поперечных усталостных изломов. Эксплуатационная стойкость таких рельсов в 1,3-1,5 раза выше эксплуатационной стойкости незакаленных рельсов. По технико-экономическим расчетам, использование объемнозакаленных рельсов с среднем за год на 1 км пути дает значительную денежную экономию.

    Важнейшее значение для качества рельсовой стали имеет ее макроструктура (строение в изломе при рассмотрении невооруженным глазом или при помощи лупы). Сталь должна иметь однородное мелкозернистое строение без шлаковин, волосовин, плен, следов неоднородного распределения химических добавок по сечению. Улучшение качества достигается строгим соблюдением технических условий и непрерывным совершенствованием технологии изготовления стали и проката рельсов. Плотность рельсовой стали принята равной 7,83 т/м 3 .

    Форма и размеры рельсов

    Профиль рельсов

    Служебные свойства рельсов в основном характеризуются их массой, отнесенной к 1 м длины, профилем поперечного сечения (рис. 2) и механическими характеристиками металла, из которого они изготовлены. Чтобы увеличить сопротивление вертикальным силам, рельсу придают форму двутавровой балки, верхняя полка которой (головка рельса ) приспособлена для контактирования с колесами подвижного состава, а нижняя (подошва рельса ) - для закрепления на опорах. Вертикальная стенка, соединяющая головку и подошву, называется шейкой .

    Рис. 2 - Основные части рельсов

    Профиль рельсов обусловлен взаимодействием его с колесами подвижного состава и конструктивным оформлением элементов верхнего строения пути. Типичный профиль современных широкоподошвенных рельсов представлен на (рис. 3).

    Поверхность катания головки всегда делают выпуклой, чтобы обеспечить наиболее благоприятную передачу давления от колес. Для рельсов типов Р75, Р65 и Р50 больший радиус R 1 этой поверхности принят равным 300 мм. К граням кривизна изменяется до радиуса R 2 , равного 80 мм. В рельсах типа Р43 поверхность катания головки рельса очерчена одним радиусом R 1 .

    Рис. 3 - Современный широкоподошвенный рельс

    Поверхность катания сопрягается с боковыми гранями головки по кривой радиусом r 1 (рис. 3), по величине близким к радиусу выкружки бандажа. В рельсах типов Р75, Р65 и Р50 r 1 равен 15 мм.

    Боковые грани головки или вертикальны, или наклонны. У рельсов типов Р75, Р65 и Р50 этот наклон (1:k ) принят равным 1:20. Боковые грани головки стремятся сопрягать с нижними наименьшими радиусами r 2 , равными 1,5-4 мм. Это делается для того, чтобы опорная поверхность для накладок была наибольшей. По этим же соображениям принимают такими же и радиусы r 6 и r 7 .

    Опорными поверхностями для накладок служат нижние грани головки и верхние грани подошвы рельса. В настоящее время наиболее распространены такие углы α, при которых tg α = 1:n для рельсов типов Р75, Р65 и Р50 составляет 1:4.

    Сопряжение нижних граней головки с шейкой должно обеспечивать достаточную опорную поверхность для накладки и наиболее плавный переход от толстой головки к сравнительно тонкой шейке в целях снижения местных напряжений и равномерности остывания рельсов при прокатке. В рельсах типов Р75, Р65 и Р50 приняты r 3 = 5÷7 мм и r 4 = 10÷17 мм.

    Шейка современного рельса имеет криволинейное очертание радиусом R ш (от 350 до 450 мм для отечественных рельсов), которое в наибольшей мере обеспечивает плавность перехода от шейки к подошве и головке.

    Сопряжение шейки с подошвой выполнено радиусом r 6 , величина которого диктуется теми же соображениями, что и величины радиусов r 3 и r 4 . Переход к наклонной верхней поверхности подошвы у рельсов типов Р75, Р65 и Р50 сделан по радиусу r 5 , равному 15-25 мм.

    На железных дорогах РФ применяют рельсы типов Р75, Р65 и Р50 (рис. 4), имеющие массу 74,4; 64,6 и 51,6 кг/пог. м. Преобладающими при укладке сейчас являются рельсы типа Р65; на особо грузонапряженных линиях - термически упрочненные рельсы типа Р75. Изготавливают их длиной 25 метров.

    Рис. 4 - Стандартные профили рельсов: а - типа Р75; б - Р65; в - Р50

    Длина рельсов

    На дорогах мира стремятся шире применять длинные рельсы и сварные рельсовые плети. За счет этого уменьшается число стыков, что улучшает условия взаимодействия пути и подвижного состава, дает большой экономический эффект. Например, если вместо рельсов типа Р65 длиной 12,5 м уложить рельсы того же типа, но длиной 25 м, то за счет уменьшения потребности в стыковых скреплениях на каждых 1000 км будет сэкономлено 3902 тонн металла. Кроме того, уменьшение числа стыков примерно на 10% снизит сопротивление движению поездов, уменьшит износ колес подвижного состава и расходы на текущее содержание пути.

    Стандартная длина современных рельсов в различных странах колеблется от 10 до 60 м: в РФ 25 м; в Чехословакии 24 и 48 м, в ГДР и ФРГ 30, 45 и 60 м; во Франции 18, 24 и 36 м; в Англии 18, 29 м; в Японии 25 м; в США 11, 89 и 23, 96 м. В РФ для стрелочных переводов в ограниченном количестве прокатывают рельсы длиной 12,5 м.

    Кроме рельсов стандартной длины, применяют и укороченные для укладки на внутренних нитях кривых участков пути. В РФ такие рельсы имеют укорочение на 80 и 160 мм, а при длине 12,5 м - на 40, 80 и 120 мм.

    Масса (вес) рельсов

    Основной характеристикой, дающей общее представление о типе и мощности рельса, - является его вес , выраженный в килограммах на один погонный метр.

    Определение оптимального веса рельса - задача чрезвычайно трудная, так как он зависит от большого количества факторов: осевых нагрузок, скоростей движения поездов, грузонапряженности, качества рельсовой стали, профиля рельса и других.

    Масса рельсов определяется из следующих соображений:

    • чем больше нагрузки на ось железнодорожного экипажа, скорости движения поездов и грузонапряженность линии, тем большей при прочих равных условиях должна быть масса рельса с ;
    • чем больше масса рельса q , тем меньше при прочих равных условиях эксплуатационные расходы на грузонапряженных линиях (на содержание пути, на сопротивление движению поездов).

    В настоящее время имеются различные предложения по определению массы рельса эмпирически, в зависимости от ограниченного количества факторов. Профессор Г. М. Шахунянц предложил определять массу рельса в зависимости от вида подвижного состава, грузонапряженности линии, скорости движения поездов и статической нагрузки на ось локомотива по выражению

    где а - коэффициент, равный 1,20 для вагонов и 1,13 - для локомотивов;

    T max - грузонапряженность, млн. т·км/км в год;

    υ - скорость движения поездов, на которую рассчитывается конструкция пути, км/ч;

    Численные значения, входящие в формулу, можно брать из таблицы 1.2

    Несомненно, формула, приведенная выше, не отражает всей сложности взаимосвязи факторов, влияющих на выбор веса рельса. Однако она дает возможность принимать решение в порядке первого приближения достаточно обоснованно.

    Окончательно массу рельса выбирают на основании расчетов на прочность и экономической целесообразности. Масса стандартных рельсов в РФ принята 44-75 кг/м. Их основные характеристики приведены в (табл. 1.3) и обозначены на (рис. 5). Рельсы Р43 прокатывают в ограниченном количестве для стрелочных переводов.

    Рис. 5 - Основные размеры современного рельса (к таблице 1.3)

    На железных дорогах других стран рельсы имеют массу, кг/м:

    • США - 30-77;
    • Англия:
      • двухголовые - 29,66-49,53;
      • широкоподошвенные - 22,37-56,5;
    • Франция и Бельгия - 30-62;
    • ГДР и ФРГ - 30-64.

    Экономическая эффективность применения тяжелых рельсов

    Эффект от использования тяжелых рельсов заключается в их долговечности, снижении расхода материалов, уменьшении сопротивления движению поезда и сокращении затрат на текущее содержание пути.

    По данным ВНИИЖТа, если за базу взять рельс типа Р50, то увеличение его массы на 1 кг снижает затраты труда на текущее содержание пути на 1,5-1,8% и уменьшает расход материалов до 1,4%.

    Более тяжелый рельс распределяет давление колес подвижного состава на большее количество шпал, вследствие чего уменьшается давление на каждую шпалу, замедляется механический износ и увеличивается срок их службы. Одновременно снижается динамическое давление на балласт, уменьшается истирание, измельчение частиц балласта и его загрязнение.

    С увеличением массы рельсов реже возникает надобность в среднем и подъемочном ремонтах пути. По тяжелым рельсам можно перевезти и больше грузов. Так, рельсы Р50 на 15%, а Р65 на 45% тяжелее рельсов Р43, но рельсы Р50 за время службы могут пропустить тоннаж в 1,5 раза, а Р65 в 2 раза больше, чем Р43. С возрастанием массы рельсов уменьшается расход металла на единицу пропускаемого тоннажа и сокращаются затраты на замену рельсов (капитальный ремонт), снижаются сопротивление движению поездов и расходы на тягу.

    При экономических расчетах по выбору типа рельса предпочтение отдается рельсу, для которого годовая сумма приведенных строительных и эксплуатационных расходов ∑Э пр при нормированном сроке окупаемости t n является наименьшей. Она определяется по формуле

    где А - строительные расходы (стоимость укладки рельсов);

    B i - эксплуатационные расходы i -ro года.

    Сроки окупаемости дополнительных капиталовложений на укладку тяжелых рельсов невелики - обычно 1,5-4,5 года. Поскольку применять тяжелые рельсы очень выгодно, в РФ их средняя масса (q ср) постоянно увеличивается.

    Срок службы рельсов

    Ожидаемый срок службы рельсов определяют как для целесообразного ведения путевого хозяйства (например, чтобы знать периодичность смены рельсов), так и для их технико-экономической оценки.

    Срок службы рельсов является функцией работы их под подвижным составом, типа и мощности рельсов, характеристик верхнего строения и подвижного состава, условий эксплуатации пути и технологии изготовления рельсов.

    Рельсы выходят из строя по износу и дефектам. Их следует изымать из пути при износе на определенную допустимую величину; по этому фактору и определяется срок службы рельсов. Допустимый износ z 0 (рис. 6) головки рельса устанавливают таким образом, чтобы поперечное сечение рельса после износа на величину площади ω 0 обеспечило допускаемые напряжения, и чтобы при изношенных бандажах колес гребни не задевали гайки и головки болтов в стыках рельсов или за части двухголовых накладок, выступающих за головку рельса.

    Рис. 6 - Поперечное сечение головки рельса (заштрихована допустимая площадь износа)

    Согласно рисунку

    ω 0 = bz 0 - ∆,

    где b - ширина головки рельса;

    z 0 - нормированный предельный износ головки рельса, принимаемый в РФ по ПТЭ;

    ∆ - учитывает разницу очертания головки и воображаемого прямоугольника, которую принимают равной 70 мм 2 .

    Т = ω 0 / β,

    где β - удельный износ поперечного сечения головки рельса от прохода 1 млн. т груза брутто, мм 2 .

    Величина β определяется для конкретных условий службы рельсов с выполнением тяговых расчетов и учетом качества рельсовой стали. Для приближенных расчетов можно использовать среднесетевые значения β ср (мм 2 /млн. т брутто) из таблицы

    Поскольку износ объемнозакаленных рельсов происходит в 1,3-1,5 раза медленнее, чем незакаленных, величину β ср для первых следует скорректировать коэффициентом α, равным примерно 0,65-0,5.

    Таким образом, зная ω 0 и β ср, можно найти тоннаж Т , который могут пропустить рассматриваемые рельсы за весь срок службы. При этом если грузонапряженность (годовой тоннаж) Т г данной линии известна и постоянна, то срок службы рельсов в годах на этой линии можно найти так:

    Но так как грузонапряженность на наших железных дорогах ежегодно увеличивается, то срок службы рельсов на данной линии по наработке прошедшего тоннажа

    где Т 1 , Т 2 , Т 3 , …, Т t - соответственно тоннаж в первый, второй, третий, t -й год после укладки рельсов.

    Несмотря на повышение износоустойчивости рельсов, их приходится заменять раньше достижения нормативного износа из-за одиночного выхода из строя по дефектам. Выход рельсов по дефектам происходит как из-за нарушения или несовершенства технологии изготовления, так и по условиям их эксплуатации.

    При установлении сроков службы рельсов принимают за допускаемый суммарный одиночный их выход из строя по дефектам: Р50 - 6 штук, а Р65 и Р75 - 5 штук на 1 км пути или наибольший годовой выход для этих рельсов - 2 шт. на 1 км.

    Срок службы рельсов между капитальными ремонтами пути в млн. т брутто исходя из одиночного выхода рельсов по дефектам Т од Г. М. Шахунянц предложил определять по формуле

    где λ р - коэффициент, учитывающий качество рельсовой стали, дли незакаленных рельсов λ р = 1, а для объемнозакаленных λ р = 1,5;

    Член, учитывающий влияние кривизны пути и лубрикации (смазки); при R ≥ 1200 м А = 0 и при R < 1200 м А = 800; при отсутствии смазки боковых граней головки рельсов и гребней колес α луб = 1, при смазке графитомолибденовыми карандашами или для графитовой смазки на солидоловой основе α луб = 0,2;

    Член, учитывающий влияние длины рельсов (плети);

    Р дн - средняя по тоннажу нормативная нагрузка на рельс от оси колесной пары, установленная в 1964 г. при принятии нормативного срока службы незакаленных рельсов (для Р50 - 350 млн. т груза брутто, для Р65 - 500 млн. т груза брутто), равная для рельсов Р50: Р дн = (1 + 0,012υ i) q ок = (1 + 0,012·50)·14·9,8 = 228,6 кН и для рельсов Р65: P дн = (1 + 0,012·60)·18·9,8 = 303,8 кН;

    Р с - средневзвешенная по тоннажу исполненная нагрузка на рельс от оси колесной пары, кН;

    q р - масса рельса, кг/м;

    γ норм - нормативное значение допускаемого одиночного изъятия рельсов по дефектам (Р50 - 6 шт., Р65 и Р75 - 5 шт. на 1 км пути);

    q ок - средняя нагрузка на рельс от оси колесной пары, зависящая от типа рельса.

    Из двух значений, найденных по формулам, приведенных выше, для расчета следует принимать наименьшее.

    Ограничение срока службы рельсов по одиночному их выходу признать нормальным нельзя, поэтому главнейшая задача - проведение мероприятий, позволяющих увеличить срок службы рельсов согласно их мощности до полного расчетного износа. Этого можно добиться благодаря улучшению качества рельсового металла, в том числе за счет термической обработки; применению бесстыкового пути со сварными рельсовыми плетями увеличенной длины; наплавке изношенных рельсовых концов; улучшению конструкции верхнего строения пути в целом; применению лубрикаторов, смазывающих боковые грани головки рельсов в кривых; улучшению текущего содержания рельсов и пути в целом.

    После истечения установленных сроков службы в местах первоначальной укладки рельсы снимают с пути, сортируют, подвергают в рельсоремонтных предприятиях ремонту и сварке и снова укладывают в путь, но уже с более легкими условиями эксплуатации, где они пропускают еще примерно 2/3 начального нормативного тоннажа.

    Важными мерами по продлению сроков службы рельсов в пути является шлифовка их головки рельсошлифовальными поездами для удаления с поверхности катания неровностей и поверхностного поврежденного слоя металла, наплавка рельсовых концов, смазка рельсов в кривых для уменьшения бокового износа головки.

    Сроки службы обычных высокоуглеродистых рельсов по сравнению с зарубежными в 2-3 раза, а термически упрочненных в 3-4 раза выше; тем не менее этого недостаточно, так как интенсивность использования железнодорожных путей в нашей стране в 6-10 раз больше, чем за рубежом. Поэтому ведутся научные исследования по созданию еще более прочных и долговечных рельсов.

    В России на долю железнодорожного транспорта приходится 85% всех перевозок. Наша страна лидирует по объему изготовления рельсов и по изучению и разработкам в этой области. Уральский институт металлов уже более 50-ти лет занимается изучением и решением задач по повышению эксплуатационных качеств рельсов и безопасного движения по ним.

    Изготавливают рельсы из стали, легируя ее разными элементами:

    • Ti (титаном),
    • Zr (цирконием),
    • Al (алюминием),
    • V (ванадием) и т.д.

    Легирующие добавки влияют на структуру и эксплуатационные характеристики рельсов. Цена рельс зависит от цены цветных металлов. Первым начал использовать технологию изготовления легированной стали для рельс с применением ванадия и ванадия с азотом Уральский институт. Все российские производители рельсы производят из легированной стали с добавлением ванадия.

    Виды рельсов:

    • Ширококолейные железнодорожные (Р-50, Р-65, Р-75);
    • Узкоколейные железнодорожные(Р-8, Р-11, Р-18);
    • Трамвайные (Т-58, Т-62)
    • Рудничные (Р-33, Р-43)
    • Крановые (КР-70, КР-80, КР-100, КР-120, КР-140)
    • Рельсы остряковые (ОР-43, ОР-50, ОР-65, ОР-75) и т.д.

    План развития ж/д транспорта до 2030 г. определяет строительство около 20 тыс. км железных дорог, при чем скоростных и высокоскоростных. Поэтому для удовлетворения этих требований российские металлургические заводы должны освоить технологию производства таких рельс, по которым пассажирский поезд сможет развивать скорость от 200 до 350 км/ч. Для этого необходимо переходит к широкому производству рельс длиной 50 - 100 м.

    Ценообразование на новые рельсы и рельсы б\у

    На новые рельсы цена зависит от цены металла и технологии изготовления. С повышением цена на металлы (в том числе цветные) повышается и цена на рельсы.

    Довольно успешно отлажена продажа железнодорожных рельс б/у . Применение новых рельс не всегда оправдано. Например для строительства подъездных путей подойдут и бывшие в употреблении, но годные для повторной укладки.

    Рельсы б/у с минимальной степенью износа, практически не уступают новым рельсам по качеству и безопасности в эксплуатации, но цена рельсов б/у может иногда отличаться более, чем на 50 % цены на рельсы новые .

    Динамика цен на крановые рельсы

    На б/у рельсы цена зависит от востребованности и цены металла:

    • На б/у рельсы цена будет выше, если это рельсы дефицитных размеров (Р33, Р-38);
    • На б/у рельсы цена будет ниже, если это рельсы ходовых размеров (Р50,Р-60);
    • Цена рельсов б/у будет повышаться, если цена металлолома будет повышаться.

    Основные металлургические заводы-производители рельсов в России

    • ОАО «Уральская Железнодорожная Компания»
    • ЕвразХолдинг включающий ОАО ЕВРАЗ НТМК (Нижнетагильский металлургический комбинат) и ОАО ЕВРАЗ ЗСМК (Западно-Сибирский металлургический комбинат). Металлургические заводы ЕвразХолдинга ведут реконструкцию рельсового производства для изготовления длинномерных рельсов мирового уровня качества.

    Рельсы (в переводе с английского rails, с латинского regula – изобретённая в Древнем Риме палка, значение ширины между двумя такими палками равняется 143,5 сантиметров) – балки из металла с особым сечением, использующиеся в железнодорожной сфере в качестве опорного материала, по которому движется железнодорожный транспорт. Такие балки укладываются параллельно друг другу, образуя тем самым так называемый двухниточный путь.

    Основное назначение рельс состоит в том, что они регулируют направление колёс при передвижении транспорта, а также принимают на себя давление колёс и передают его к деталям верхнего пути, лежащим ниже. На тех местах, где используется электрическая тяга, рельсы выступают в качестве проводников силового тока, тогда как в зонах, использующих автоблокировку, рельсы используются как проводник тока.

    Материал

    Как правило, железнодорожные рельсы производятся из стали с содержанием углерода. На то, насколько качественной будет эта сталь, влияют множество факторов – химическое строение стали, а также её микро- и макроструктура.

    Добавление углерода в состав стали очевидно – этот материал увеличивает долговечность и надёжность стального покрытия.

    Но стоит помнить, что чрезмерно высокое количество углерода может навредить стали, например, увеличив её хрупкость. Поэтому структура стали при увеличении количества добавляемого углерода должна быть наиболее прочной, тем более при влиянии негативных факторов и веществ.

    Но не только углерод способен повысить качество стали. Например, обработка марганцем сделает сталь более вязкой, долговечной и устойчивой к механическим повреждениям. С помощью кремния сталь станет намного твёрже и износоустойчивее. А с помощью ванадия, циркония и титана (микроэлементов), структура и состав стали качественно улучшатся.

    Фосфорные и серные добавки губительны для стали, ведь они увеличивают её подверженность к хрупкости и ломке. В сталях с большим количеством содержания этих химических элементов нередко появляются разломы, щели и трещины).

    Как уже было сказано ранее, рельсы обладают микро- и макроструктурой.

    Первая структура состоит из перлита (особой горной породы), структурированного в виде пластин с содержанием феррита. С помощью метода термических обработок высокими температурами (так называемого закаливания) сталь получает специальный однородный состав, который позволяет ей противостоять износам и быть жёсткой и вязкой.

    Такие рельсы, полученные методом закаливания, обладают отличной долговечностью и надёжностью.

    Макроструктура, в свою очередь, обязана не содержать слишком больших зерён, пустот, лишних или неоднородных веществ в своём составе.

    Основные характеристики рельсов: форма, вес и длина

    Профиль рельсовых конструкций изменялся с течением времени.

    Так, за всю историю производства было изготовлено немало видов рельс – уголковые, двухголовые, широкоподошвенные и даже грибовидные.

    Структура нынешних рельс с широкой подошвой содержит в себе головку, подошву и специальный соединительный материал – шейку, которая сочленяет первые две детали.

    Для обеспечения перенесения части давления с колёс транспорта на центральную часть рельсов, её поверхность создаётся немного выпуклой. Сочленение головки и подошвы с рельсовой шейкой создаётся особо плавно, сама же рельсовая шейка обладает формами кривой для уменьшения рисков появления напряжений.

    Рельсовая подошва обычно делается наиболее широкой, для того чтобы обеспечить рельсу боковую устойчивость.

    Как правило, обычный железнодорожный рельс, изготавливающийся в России, производится длиной 12,5, 25, 50 и 100 метров.

    При необходимости использования на неровных зонах путей, могут изготавливаться рельсы укороченной длины. Длина так называемого бесстыкового пути (или «бархатного») варьируется в пределах от 400 метров и до перегонной длины. Применять рельсы большей длины будет лишь положительным фактором – уменьшится сопротивление передвижения железнодорожного транспорта вкупе с увеличением износостойкости материала. Как пример, после перехода на «бархатный путь» сохраняется в среднем 4 тонны стали на один километр пути за счёт отсутствия креплений на стыке рельсов.

    Главный параметр рельса, зная который, можно судить о мощности материала, – удельный вес одного метра рельса, измеряющийся в килограммах.

    При подборе типа рельсов необходимо учитывать загруженность железнодорожной линии и скорость передвижения транспорта. К примеру, массивный рельс увеличивает износоустойчивость железнодорожных шпал, также такие тяжёлые рельсы экономят на расходовании металла, и, как следствие, уменьшают издержки по обновлению рельсов ввиду повышения их долговечности.

    Шпалы – это основной крепёжный материал, использующийся при изготовлении железнодорожных путей. Современные технологии позволяют изготавливать шпалы из различного сырья: дерева, железобетона, стали и даже пластика.

    На цену рельс влияют множество факторов, например, удельный вес, ширина и длина, износоустойчивость и твёрдость.

    Типы рельсов

    Все из возможных рельсов бывают:

    • Железнодорожными – такие рельсы являются самыми популярными и известными в производстве. Обычно они изготавливаются длиной 12,5 и 25 метров, масса одного метра колеблется в пределах от 50 до 65 килограмм. Обозначение – Р50 и Р65.
    • Узкоколейными – используются при работах, где необходимо малая ширина межрельсового пространства. Чаще всего эти рельсы укладываются в шахтах и других местах, где ограничена площадь передвижения. Обозначение: Р18, Р24.
    • Рудничными – применяются для укладки бесстыковых путей и изготовления методов их соединения (стрелочные переводы). Более того, эти рельсы также используются в сфере промышленности. Обозначение: Р33, Р43.
    • Трамвайными – предназначены для постройки путей для трамваев в мегаполисах с низкой загруженностью транспорта. Такие рельсы обладают малым весом и более подвержены к износам. Обозначение: Т62.
    • Крановыми – используются при укладке путей для подъемного крана. Обозначение: КР70, 80, 100, 120, 140).
    • Подкрановыми – такой тип рельс является самым тяжёлым. Назначение совпадает с назначением крановых рельс. Отличительной особенностью данного типа рельс является возможность укладки в несколько рядов. Обозначение: КР50, КР70, КР100).
    • Рамными – используются при сооружении переводных механизмов на железнодорожных путях. Обозначение: РР65.
    • Контррельсовыми – предназначены для работ в верхних конструкциях путей. Обозначение: РК50, РК65, РК75.
    • Остряковыми – используются для работ в верхних конструкциях путей. Обозначение: ОР43, ОР50, ОР65, ОР75. Особым типом рельс является вид ОР43, который используется при строении соединений железнодорожных путей и использующийся в конструировании экскаваторных деталей, являющихся опорно-поворотными.

    Также рельсы классифицируются по:

    • Качеству (рельсы бывают термо- и нетермоупрочнёнными);
    • Присутствию отверстий для болтов;
    • Метода выплавления стали и др.

    Цена рельсов тесно связана и даже зависит от данных факторов.

    Условные обозначения

    Рельсы могут поступать с длинным номером, в котором будет, например, пять и более групп цифр.

    В них выделяются:

    • A - тип рельса;
    • B - категория качества;
    • C - марка стали;
    • D - длина рельса;
    • E - наличие болтовых отверстий;
    • F - обозначение стандарта ГОСТ.

    Пример: Рельс типа Р65, категории Т1 из стали марки M76T, длиной 25 м с тремя болтовыми отверстиями на обоих концах рельса:

    • Рельс Р65-Т1-М76Т-25-3/2 ГОСТ Р 51685-2000
    
  • Великий Новгород
  • Владимир
  • Волгоград
  • Воронеж
  • Ижевск
  • Иркутск
  • Казань
  • Кемерово
  • Киров
  • Кострома
  • Краснодар
  • Красноярск
  • Курган
  • Курск
  • Липецк
  • Москва
  • Набережные Челны
  • Новосибирск
  • Оренбург
  • Пермь
  • Петрозаводск
  • Псков
  • Ростове-на-Дону
  • Рязань
  • Самара
  • Саратов
  • Смоленск
  • Тамбов
  • Тверь
  • Томск
  • Тюмень
  • Хабаровск
  • Челябинск
  • Ярославль
  • Физические свойства.

    Элементами, присутствие которых в стали считается полезным, являются железо, углерод, марганец и кремний; нежелательными примесями стали являются фосфор, сера, газы и шлак. Большую роль при изготовлении рельсовой стали играет углерод; с увеличением содержания углерода повышается твердость и предел прочности стали, но понижается ее вязкость. Однако, принимая в расчет однородность современной мартеновской стали, регулированием содержания углерода можно всегда получить сталь желаемой твердости. Содержание углерода в стали, предназначенной для прокатки рельсов весом от 34,7 до 39,5 кг/пог. м, колеблется от 0,55 до 0,68%, для рельсов весом от 40,2 до 44,6 кг/пог. м - от 0,64 до 0,77%, для рельсов весом от 45,1 до 59,5 кг/пог. м - от 0,67 до 0,80% и для рельсов весом в 60 кг/пог. м - от 0,69 до 0,82%.
    Марганец в том или ином количестве присутствует в любой рельсовой стали; он обладает способностью раскислять металл и значительно повышать его прочность, вязкость и упругость, а также сопротивляемость износу. Согласно Техническим условиям на мартеновскую рельсовую сталь содержание марганца допускается в рельсах весом от 34,7 до 44,6 кг/пог. м в количестве от 0,60 до 0,90% и в рельсах весом 45,1 кг/пог. м и выше - от 0,70 до 1,00%.
    Кремний в стали содержится всегда. Химическое сродство кремния с кислородом делает его особенно полезным с точки зрения устранения газов, не удаленных марганцем. Содержание кремния в рельсовой стали должно быть не ниже 0,10%; количество его может доходить до 0,23%. Более высокое содержание кремния в сталях, изготовленных как по техническим условиям AREA, так и по другим инструкциям на изготовление стандартных рельсов, значительно снижает, а в некоторых случаях и полностью устраняет необходимость «успокоения» стали в изложницах с помощью алюминия, способствующего повышению плотности стали.
    Наиболее вредной примесью рельсовой стали является фосфор, так как он понижает способность стали сопротивляться удару, делая ее хладноломкой. В мартеновских рельсах содержание фосфора допускается не свыше 0,04%.
    Сера способствует образованию между волокнами стали сульфидных пленок. Пленки делают сталь красноломкой и приводят к образованию в ней трещин, а также к выкрашиванию металла в процессе прокатки. Присутствие любого количества серы в стали нежелательно.
    Шлак представляет собой расплавленную золу или осадок; он содержит в себе примеси, удаленные из расплавленного металла. Очень большое внимание уделяется тому, чтобы при разливке стали из ковша по изложницам в ней не задерживались частицы шлака.

    Процесс прокатки рельсов.

    Качество рельсов, с точки зрения сопротивляемости их износу, зависит не только от правильного химического состава и физических свойств стали, но также и от соблюдения существующих правил их изготовления. По требованиям железных дорог металлургической промышленностью были разработаны новые способы регулируемого охлаждения рельсов, термической закалки их по всей длине и закалки концов, являющиеся средством продления срока службы рельсов.
    Металлургические отделы на рельсопрокатных заводах чувствуют все большую ответственность за качество выпускаемой стали. С помощью специальных работников, ведущих наблюдения за всеми этапами производства стали, осуществляется постоянный контроль над методами производства рельсов. Инспектора, имеющие право браковать рельсы на любой стадии их изготовления, в случае если рельсы не соответствуют требуемому стандарту, осуществляют контроль над производственными отделами заводов.
    Первым шагом по изготовлению рельсов является производство рельсовой стали. Последние достижения в области металлургической промышленности создали условия для более надежного контроля над всем мартеновским процессом; это привело к некоторому изменению технологии производства стали и улучшило качество выпускаемого металла. После того, как сталь в мартеновской печи нагреется до требуемой температуры, и после того, как будет проверен химический состав стали, металл разливают по изложницам. Форма изложниц слегка конусообразная, кверху суженная, поверхность волнистая, углы изложниц тщательно закруглены. Длина слитков меняется в зависимости от сечения рельсов, для которых они предназначены; слитки, из которых изготовляются образцы для испытания на ударную нагрузку, делаются несколько длиннее. По Техническим условиям образцы для испытания на ударную нагрузку берутся из верхней части головных рельсов А, из второго, среднего и последнего слитков каждой плавки.

    Прокатка рельсов.

    Первой задачей при производстве рельсов является получение слитка, однородного по всей длине. Сейчас же после затвердевания слитки доставляют к нагревательной печи, где их подогревают до температуры прокатки. В течение всего процесса изготовления рельсов слитки должны перемещаться в определенном порядке, так, чтобы все время сохранялись порядковые номера плавки и слитков. Процесс нагревания слитков тщательно регулируется; для контроля за нагреванием через небольшие интервалы времени проводятся наблюдения с помощью оптического пирометра. Охлаждение слитков, предназначенных для прокатки рельсов, не допускается. Затем слитки, доставленные к блюмингам на специальных тележках, пропускаются через валки верхними концами вперед; здесь слитки 4 раза сильно обжимаются медленно вращающимися валками. Для удаления загрязненного металла головной и хвостовой концы блюмса обрезаются; блюмс делится на две части, из которых каждая в свою очередь делится на два, три или четыре рельса, в зависимости от длины и поперечного сечения профиля, для которого они предназначаются.
    Одно время на большинстве рельсопрокатных заводов входило в систему допускать охлаждение блюмсов до температуры окружающего воздуха и затем, перед прокаткой рельсов, снова их нагревать.
    При условии, если сталь вполне доброкачественная, слиток однороден, блюмсы должным образом подготовлены, качество рельсов будет зависеть еще от правильного выполнения прокатки, являющейся последней стадией изготовления рельсов. При постепенном обжатии металла в процессе многократного пропуска его через валки получается хорошо промешанная, мелкозернистая сталь; при этом последние 5-6 раз прокатка производится на медленно вращающихся валках. На основании опыта различных металлургических заводов установлено, что для обжатия слитка до окончательного профиля рельса требуется прокатать его от 18 до 30 раз; на долю блюминга и рельсопрокатного стана приходится приблизительно по одинаковому количеству проходов рельсов через валки. Железнодорожники обычно предпочитают большее количество проходов при соответственно меньшем обжатии сечения после каждого прохода (рис. 1).


    Рис. 1. Внутренний вид рельсопрокатного цеха металлургического завода Гэри (Gary) Американской стальной корпорации

    Маркировка рельсов.

    Данные, касающиеся веса и типа рельса, рода стали, завода-изготовителя, месяца и года прокатки наносят на одну сторону шейки рельса в виде выпуклых букв; буквы выкатываются нижними валками при последнем проходе рельса. К клейму добавляются также буквы, указывающие на то, что рельсы изготовлены из стали со средним содержанием марганца с применением регулируемого охлаждения, что они подвергались термической обработке и что концы их закалены. Поскольку после разлива стали порядковые номера плавок и слитков сохраняются, то на рельсах указывают также номер плавки и слитка. Эти данные выбивают на клеймовочном станке на противоположной стороне шейки, пока рельс еще находится в горячем состоянии. Слитки прокатываются головными концами вперед; рельсы последовательно маркируются буквами А, В, С, D и т. д.

    Распиловка рельсов.

    После окончания прокатки, пока сталь еще не остыла, прокатанную полосу разрезают на куски нужной длины. Обычно пилы располагают так, что они могут одновременно отрезать несколько рельсов. Должен быть предусмотрен соответствующий припуск в длине рельсов, так как после снижения температуры рельса с температуры прокатки до температуры окружающего воздуха длина его уменьшится. Указанный припуск на усадку составляет около 4,76 мм на 305 мм.

    Предварительный изгиб рельсов.

    Следующая операция заключается в пропуске рельсов через ряд роликов, изгибающих рельсы так, чтобы после охлаждения их до температуры окружающего воздуха они оказались совершенно прямыми. Без этой операции большее отношение объема охлаждаемого металла к его поверхности в головке рельса по сравнению с подошвой (что обычно имеет место для большинства сечений рельсов), в сочетании с несколько более высокой окончательной температурой головки, привело бы при охлаждении к изгибу рельса на головку. Степень предварительного изгиба рельса зависит от его сечения. Для предупреждения расплющивания металла и вдавливания в поверхность катания головки заусенцев, образующихся при распиловке рельсов, машина для изгиба рельсов снабжается специальными устройствами, не допускающими попадания роликов на концы рельсов.
    После прохождения этой стадии изготовления мартеновские рельсы подвергаются регулируемому охлаждению и термической обработке, целью которых является улучшение структуры металла и повышение износостойкости рельсов.
    Хотя в этой области и проводились обширные исследования в течение довольно длительного периода, но только в 1935 г. рельсы, изготовленные с регулируемым охлаждением, с термической обработкой по всей длине и с закалкой концов, стали производиться на коммерческой основе и в любом желаемом количестве. Однако в небольших количествах рельсы с регулируемым охлаждением начали выпускать уже с 1931 г. Другим способом охлаждения рельсов является выдерживание их на стеллажах.

    Охлаждение рельсов на стеллажах.

    Способ охлаждения рельсов на стеллажах после предварительного изгиба их начали применять сразу же после появления рельсов из мартеновской стали. Согласно этому методу рельсы кладут боком на большие решетки на равном расстоянии один от другого; в некоторых случаях для равномерного охлаждения рельсов решетки покрывают и огораживают. Когда температура рельсов достигает температуры рекристаллизации, рельсы перевертывают и они продолжают охлаждаться до температуры окружающего воздуха.

    Регулируемое охлаждение рельсов.

    Приблизительно в 1926 г. владельцы фирмы Зандберг (Sandberg) в Лондоне указали на возможность существования прямой зависимости между флокенами, часто возникающими при прокатке рельсов, и поперечными трещинами. Другие ученые, как Мекки (Mackie) и Гергардт (Gerhardt), тоже установили, что флокены являются основной причиной образования поперечных трещин; последние, так же как и Зандберг (Sandberg), считали, что появления флокенов можно избежать, введя регулируемое охлаждение рельсов вместо обычно применяемого охлаждения их на стеллажах. Правильность этих предположений была подтверждена результатами научных исследований, проводимых в Иллинойском университете под руководством AREA и Технического комитета заводов, изготовляющих рельсы.
    Метод Зандберга основан на теории, заключающейся в том, что флокены образуются в той стадии охлаждения рельсов, которая соответствует развитию максимальных внутренних сил в рельсовой стали, т. е. при температуре от 350 до 500°С. Мекки утверждает, что флокены появляются тогда, когда сталь находится в состоянии синеломкости, т. е. при температуре ее от 200 до 300°С.
    Метод охлаждения рельсов, применяемый в США, разработан с учетом обеих приведенных выше теорий. Согласно этому методу рельсы охлаждаются обычным способом на горячих стеллажах до тех пор, пока их температура не упадет до 538-385°С, после чего рельсы сейчас же укладывают рядами в большие короба (рис. 2) или изолированные вагоны, где оставляют их в течение 24 ч. Для того чтобы в дальнейшем можно было с помощью электромагнитного крана поднимать рельсы целыми пакетами, последние разделяются между собой прокладками. На протяжении, по крайней мере, 10 ч, в течение которых происходит постепенное охлаждение рельсов, короб остается закрытым; ни один рельс не вынимают из короба до тех пор, пока температура верхнего ряда рельсов не достигнет 149°С.


    Рис. 3. Медленное перемещение концов рельса под пламенем газа коксовальных печей с последующей закалкой воздухом


    Рис. 2. Опускание рельсов в короба для регулируемого охлаждения

    Контрольной температурой является температура, измеряемая в нижнем ряду между наружным и соседним с ним рельсом на расстоянии не менее 304,8 мм и не более 914,4 мм от конца рельса. За контрольной температурой очень тщательно наблюдают с помощью термопар. При наличии рельсов весом 49,6 кг/пог. м и более за первые 7 ч после укладки нижнего ряда температура их не должна упасть ниже 149°С; для рельсов весом менее 49,6 кг/пог. м этот промежуток времени составляет 5 ч.

    Влияние регулируемого охлаждения.

    Работа в пути рельсов, изготовленных с помощью регулируемого охлаждения, показала, что этот процесс действительно предупреждает появление флокенов и что, вдобавок к этому, рельсы, прошедшие такую обработку, обладают несколько лучшими физическими свойствами, чем обычные рельсы, а с точки зрения сопротивляемости износу - эквивалентны рельсам, охлажденным на горячих стеллажах.
    При сравнении качества рельсов, изготовленных с регулируемым охлаждением, с качеством рельсов, изготовленных по ранее применявшемуся методу охлаждения их на горячих стеллажах, не было обнаружено разницы в размерах зерен стали и в упругих характеристиках ее при растяжении; была отмечена только незначительная тенденция к увеличению относительного удлинения и относительного поперечного сужения испытываемых образцов. Твердость стали по Бринеллю оставалась приблизительно прежней. Небольшая разница замечалась только при ударных испытаниях. Для того чтобы при сравнительных испытаниях на копре сломать рельс, изготовленный с регулируемым охлаждением, требовалось на один или два удара больше; в величинах же остаточного прогиба и общего удлинения, образующихся после первого удара, разница была небольшая.
    Для того чтобы в пути легко было узнавать рельсы, изготовленные с регулируемым охлаждением, на них при последнем проходе через валки выкатываются буквы СС. Эти буквы располагаются между буквами, указывающими тип рельса, и названием завода.
    Согласно последним Техническим условиям AREA потребитель может требовать, чтобы на рельсах с закаленными концами и изготовленных с регулируемым охлаждением, на противоположной стороне шейки перед номером плавки стояли буквы СН.

    Закалка концов рельсов.

    Смятие рельсовых концов в течение многих лет было одной из основных проблем содержания рельсов. С 1931 г. этот вопрос сделался предметом интенсивного изучения Рельсовым комитетом AREA, так как смятие концов служило одной из главных причин смены рельсов. Одним из наиболее успешных методов снижения интенсивности смятия рельсов является закалка рельсовых концов, которая может производиться как на металлургических заводах, так и на рельсах, лежащих в пути. Подробное описание закалки рельсовых концов в полевых условиях можно найти в статье «Сварка и наплавка рельсов и других металлических элементов верхнего строения пути».
    Было разработано несколько методов закалки рельсовых концов в заводских условиях, заключающихся в следующем:
    а) конец головки рельса в течение 80 сек нагревается с помощью электрической индукции до температуры 838°С, а потом закаливается при охлаждение его в течение 30 сек автоматически регулируемой струей теплой воды;
    б) конец головки рельса нагревается газовым пламенем в портативной печи с огнеупорной облицовкой в течение 3 мин примерно до 843°С; закалка осуществляется путем охлаждения металла в течение 3 мин струей сжатого воздуха;
    в) после распиловки рельса пилами горячей резки и снижения температуры его до 538°С закалку концов производят охлаждением их брызгами воды в течение 30-35 сек, после чего концы рельсов на некоторое время покрывают.
    На основании полевых опытов Рельсовым комитетом AREA были сделаны следующие выводы:

    1. у рельсов с закаленными концами наблюдается бесспорное снижение интенсивности их смятия по сравнению с рельсами с незакаленными концами;
    2. в рельсах, закаленных водой, наблюдается появление большого количества «влажных трещин», в то время как в рельсах, закаленных маслом, и в тех рельсах, при закалке которых охлаждающей средой служил ненагретый металл самого рельса, такой дефект встречался очень редко;
    3. средняя твердость трех групп рельсов, закаленных с охлаждением их воздухом и в дальнейшем не потребовавших наплавки концов, составляла от 361 до 374 единиц по шкале Бринелля;
    4. в рельсовых концах, первоначально слишком сильно закаленных, затем отпущенных и снова закаленных до менее высокой твердости металла, наблюдалось образование «влажных трещин».

    Другие полевые испытания, проведенные Рельсовым комитетом, показали, что закалка концов не только снижала интенсивность их смятия, но и существенно увеличивала срок службы стыковых накладок.
    В настоящее время на рельсопрокатных заводах закалка водой больше не применяется. Закалка рельсовых концов производится на специально отведенном для этой цели участке двора, сейчас же после извлечения рельсов из коробов. Обычно рельсы двигают в поперечном направлении под пламенем, получаемым с помощью газа коксовальных печей (рис. 3), из которого предварительно удаляются примеси серы; при этом каждый конец рельса обрабатывается четырьмя горелками. Первые три горелки поднимают температуру рельсовых концов до 538°С, а четвертая - до 788°С. Рельсы двигаются медленно; на обогрев одной горелкой расходуется l 1/4-1 1/2 мин, после чего концы приблизительно в течение 1/2 мин охлаждаются воздухом.

    Для обеспечения равномерной закалки рельсов в заводских условиях Рельсовым комитетом AREA была представлена на рассмотрение инструкция, касающаяся процесса производства таких работ. Эта инструкция была принята к руководству в следующем виде.
    Для закалки рельсовых концов используются рельсы, изготовленные с регулируемым охлаждением.
    На рельсах с закаленными концами должны быть выштампованы буквы СН; буквы располагаются на шейке перед номером плавки.
    Производить закалку концов водой не рекомендуется.
    Прежде чем, согласно контракту, начать производство рельсов, по требованию потребителя должны быть представлены продольные и поперечные сечения рельсов, на которых наносят распределение твердости металла, типичное для предполагаемого способа производства рельсов.
    Зона закалки должна охватывать всю ширину головки рельса, а длина закаленной поверхности должна быть не менее 38,1 мм. Глубина закалки на протяжении 38,1 мм от торцов рельсов должна составлять не менее 6,35 мм.
    После удаления обезуглероженного поверхностного слоя твердость металла, измеренная по оси поверхности катания головки на расстоянии от 6,35 до 12,7 мм от торца, должна составлять от 331 до 401 единиц по Бринеллю.
    Потребителю или его представителю представляется протокол определения твердости образцов рельсов, взятых по два из каждой плавки.
    Изготовителю разрешается производить повторную обработку рельсов, твердость которых по Бринеллю не соответствует установленным требованиям.
    Фаски должны быть выполнены так, чтобы на концах рельсов не образовывались трещины.

    Окончательная отделка рельсов.

    После охлаждения ось рельсов, как и других прокатанных в горячем состоянии профилей, несколько искривляется, вследствие чего требуется выправка рельсов в правильных прессах. Торцы рельсов очищаются от заусенцев, образующихся при распиловке рельсов в горячем состоянии, и шлифуются вращающимися шлифовальными кругами.
    Большинство дорог в настоящее время требует, чтобы для предупреждения выкрашивания металла, сплывшего под воздействием колес подвижного состава, на торцах головок новых рельсов делались фаски. На заводе эта операция выполняется электрическими или пневматическими шлифовальными станками; большей частью ширина фаски в направлении оси рельса составляет 1,59 мм, а глубина - 3,18 мм от поверхности головки.
    Обычно в каждом конце рельса сверлят по два или по три болтовых отверстия, в зависимости от длины применяемых стыковых накладок; однако, если рельсы предназначены для сварки их в длинные плети, концы остаются непросверленными. На заводах в каждом конце рельса все отверстия с помощью многошпиндельного сверлильного станка сверлят одновременно; размещают отверстия в соответствии с требованием заказчика. Хотя все еще имеется много вариантов в количестве, расположении и размерах болтовых отверстий, однако существует определенная тенденция сверлить отверстия в соответствии со стандартом AREA; этот стандарт был пересмотрен (рис. 4).


    Рис. 4. Рекомендованные AREA болтовые отверстия в наклад ках и рельсах, путевые болты и гайки:
    а - четырехдырная накладка; б - шестидырная накладка; в - квадратная гайка; г - болтовые отверстия в накладках (овальное, круглое); д - болты со стандартной нарезкой 8 витков на 25,4 мм

    Маркировка рельсов.

    Прежде чем погрузить рельсы для отправки потребителям, их распределяют по группам в зависимости от содержания в металле углерода, качества прокатки, структуры стали и отклонения их длины от стандартной; после этого концы всех рельсов, кроме рельсов с низким содержанием углерода, окрашивают в один из пяти легко различимых цветов для того, чтобы было легко находить нужные рельсы при их распределении. Распределение рельсов по группам, маркировка и погрузка производятся в соответствии с «Маркировка с распределением рельсов по группам» и «Погрузка» приведенных ниже Технических условий AREA на рельсы из мартеновской стали.
    Годность рельсовой стали, т. е. соответствие качества ее техническим условиям, определяется с помощью как химического анализа металла, так и путем проведения испытаний на прочность и пластичность образцов готовых рельсов каждой плавки. Химический анализ стали производится на образцах, высверленных из слитка. Содержание углерода, марганца, кремния, фосфора и серы определяется в каждой плавке, при этом содержание углерода проверяется ежедневно. Механические испытания рельсов производятся с помощью падающей бабы на образцах длиной от 1,22 до 1,83 м, отрезанных от головной части рельсов А второго, среднего и последнего слитков каждой плавки. Обычно опытный отрезок рельса подвергают удару бабы, падающей, в зависимости от веса рельса, с высоты от 5,18 до 6,71 м.