Дифракционная решетка. Принцип действия дифракционной решетки

Дифракционная решётка

Дифракцией называется любое отклонение распространения света от прямолинейного, не связанное с отражением и преломлением. Качественный метод расчета дифракционной картины предложил Френель. Основной идеей метода является принцип Гюйгенса - Френеля :

Каждая точка, до которой доходит волна, служит источником когерентных вторичных волн, а дальнейшее распространение волны определяется интерференцией вторичных волн.

Геометрическое место точек, для которых колебания имеют одинаковые фазы, называют волновой поверхностью . Волновой фронт также является волновой поверхностью.

Дифракционная решетка представляет собой совокупность большого числа параллельных щелей или зеркал одинаковой ширины и отстоящих друг от друга на одинаковом расстоянии.Периодом решетки ( d) называется расстояние между серединами соседних щелей, или что то же самое сумма ширины щели (а) и непрозрачного промежутка (b)между ними (d = a + b).

Рассмотрим принцип действия дифракционной решетки. Пусть на решетку нормально к её поверхности падает параллельный пучок лучей белого света (рис. 1). На щелях решетки, ширина которых соизмерима с длиной волны света, происходит дифракция.

В результате за дифракционной решеткой согласно принципу Гюйгенса-Френеля от каждой точки щели световые лучи будут распространяться во всех возможных направлениях, которым можно сопоставить углы отклонения φ световых лучей (углы дифракции ) от первоначального направления. Параллельные между собой лучи (дифрагирующие под одинаковым углом φ ) можно сфокусировать, установив за решеткой собирающую линзу. Каждый пучок параллельных лучей соберется в задней фокальной плоскости линзы в определённой точке А. Параллельные лучи, соответствующие другим углам дифракции, соберутся в других точках фокальной плоскости линзы. В этих точках будет наблюдаться интерференция световых волн, исходящих от разных щелей решетки. Если оптическая разность хода между соответствующими лучами монохроматического света будет равна целому числу длин волн , κ = 0, ±1, ±2, …, то в точке наложения лучей будет наблюдаться максимум интенсивности света для данной длины волны, Из рисунка 1 видно, что оптическая разность хода Δ между двумя параллельными лучами, выходящими из соответствующих точек соседних щелей, равна

где φ – угол отклонения луча решеткой.

Следовательно, условие возникновения главных интерференционных максимумов решетки или уравнение дифракционной решетки

, (2)

где λ – длина световой волны.

В фокальной плоскости линзы для лучей, не испытавших дифракции, наблюдается центральный белый максимум нулевого порядка (φ = 0, κ = 0), справа и слева от которого располагаются цветные максимумы (спектральные линии) первого, второго и последующих порядков (рис. 1). Интенсивность максимумов уменьшается с ростом их порядка, т.е. с увеличением угла дифракции.

Одной из основных характеристик дифракционной решетки является её угловая дисперсия. Угловая дисперсия решетки определяет угловое расстояние между направлениями для двух спектральных линий, отличающихся по длине волны на 1 нм ( = 1 нм), и характеризует степень растянутости спектра вблизи данной длины волны:

Формула для расчета угловой дисперсии решетки может быть получена при дифференцировании уравнения (2) . Тогда

. (5)

Из формулы (5) следует, что угловая дисперсия решетки тем больше, чем больше порядок спектра.

Для решеток с разными периодами ширина спектра больше у решетки, характеризующейся меньшим периодом. Обычно в пределах одного порядка меняется незначительно (особенно для решеток с небольшим числом штрихов на миллиметр), поэтому дисперсия в пределах одного порядка почти не меняется. Спектр, полученный при постоянной дисперсии, растянут равномерно во всей области длин волн, что выгодно отличает спектр решетки от спектра, даваемого призмой.

Угловая дисперсия связана с линейной дисперсией . Линей­ную дисперсию можно также вычислить по формуле

, (6) где – линейное расстояние на экране или фотопластинке между спектральными линиями, f – фокусное расстояние линзы.

Дифракционная решетка также характеризуется разрешающей способностью . Этавеличина, характеризующая способность дифракционной решетки давать раздельное изображение двух близких спектральных линий

R = , (7)

где l – средняя длина волны разрешаемых спектральных линий; dl – разность длин волн двух соседних спектральных линий.

Зависимость разрешающей способности от числа щелей дифракционной решетки N определяется формулой

R = = kN , (8)

где k – порядок спектра.

Из уравнения для дифракционной решетки (1) можно сделать следующие выводы:

1. Дифракционная решетка будет давать заметную дифракцию (значительные углы дифракции) только в том случае, когда период решетки соизмерим с длиной световой волны, то есть d »l» 10 –4 см. Решетки с периодом меньше длины волны не дают дифракционных максимумов.

2. Положение главных максимумов дифракционной картины зависит от длины волны. Спектральные составляющие излучения немонохроматического пучка отклоняются решеткой на разные углы (дифракционный спектр ). Это позволяет использовать дифракционную решетку в качестве спектрального прибора.

3. Максимальный порядок спектра, при нормальном падении света на дифракционную решетку, определяется соотношением:

k max £ d ¤l.

Дифракционные решетки, используемые в различных областях спектра, отличаются размерами, формой, материалом поверхности, профилем и частотой штрихов, что позволяет перекрыть область спектра от ультрафиолетовой его части (l » 100 нм) до инфракрасной (l » 1 мкм). Широко используются в спектральных приборах гравированные решетки (реплики), которые представляют собой отпечатки решеток на специальных пластмассах с последующим нанесением металлического отражательного слоя.

ДИФРАКЦИОННАЯ РЕШЁТКА, совокупность большого числа регулярно расположенных элементов (штрихов, щелей, канавок, выступов), на которых происходит дифракция света. Дифракционная решетка способна разлагать падающий на неё свет в спектр, поэтому она используется в спектральных приборах в качестве диспергирующего элемента. Обычно штрихи наносят на стеклянную или металлическую, плоскую или вогнутую поверхность. Штрихи с постоянным для данной решётки профилем повторяются через одинаковый промежуток d, называемый периодом дифракционной решетки. Различают пропускательные и отражательные дифракционные решетки, которые в зависимости от того, что изменяется - амплитуда или фаза световой волны, делятся на амплитудные и фазовые. Простейшая пропускательная амплитудная дифракционная решетка представляет собой ряд щелей в непрозрачном экране (рисунок 1, а), отражательная амплитудная дифракционная решетка - систему штрихов, нанесённых на плоское или вогнутое зеркало (рисунок 1, б). Фазовая дифракционная решетка может иметь вид профилированной стеклянной пластины (пропускательная дифракционная решетка, рисунок 1, в) или профилированного зеркала (отражательная дифракционная решетка, рисунок 1, г). В современных приборах применяются главным образом отражательные фазовые дифракционные решётки.

При падении монохроматического коллимированного пучка света с длиной волны λ под углом α на дифракционную решетку с периодом d (рисунок 2), состоящую из щелей шириной b, разделённых непрозрачными промежутками, происходит интерференция вторичных волн, исходящих из разных щелей. В результате после фокусировки на экране образуются максимумы интенсивности, положение которых определяется уравнением d(sin α + sin β) = mλ, где β - угол между нормалью к дифракционной решетке и направлением распространения дифракционного пучка (угол дифракции); m = 0, ±1, ±2, ±3, ... - число длин волн, на которое волна от некоторого элемента дифракционной решетки отстаёт от волны, исходящей от соседнего элемента решётки (или опережает её). Монохроматические пучки, относящиеся к разным значениям m, называются порядком спектра, а создаваемые ими изображения входной щели - спектральными линиями М 1 . Все порядки, соответствующие положительным и отрицательным m, симметричны относительно нулевого. Чем больше щелей имеет дифракционная решетка, тем уже и резче спектральные линии. Если на дифракционную решетку падает белый свет, то для каждой длины волны получится свой набор спектральных линий М 2 , то есть излучение будет разложено в спектры по числу возможных значений m. Относительная интенсивность линий определяется функцией распределения энергии от отдельных щелей.

Основными характеристиками дифракционной решетки являются угловая дисперсия и разрешающая способность. Угловая дисперсия dβ/dλ = m/dcos β характеризует степень углового разделения лучей с разной длиной волны. Разрешающая сила R дифракционной решетки, характеризующая минимальный интервал длин волн δλ, который может разделить данная дифракционная решетка, определяется выражением R = λ/δλ = mN = Nd(sin α + sin β)/λ (N - число штрихов решётки). При заданных углах разрешающую способность можно увеличить только за счёт увеличения ширины всей дифракционной решетки Nd. Область дисперсии дифракционной решетки, то есть величина спектрального интервала Δλ, в котором спектр данного порядка не перекрывается спектрами соседних порядков, удовлетворяет соотношению Δλ = λ/m.

Дифракционные решетки, используемые для работы в разных областях спектра, различаются размерами, формой, профилем штрихов, их частотой (от 6000 штрихов/мм в рентгеновской области до 0,25 штрихов/мм в инфракрасной). По способу изготовления дифракционные решетки делятся на нарезные (оригинальные), реплики (копии с оригинальных дифракционных решеток) и голографические. Оригинальные нарезные дифракционные решетки изготовляются с помощью специальной делительной машины с алмазным резцом, профиль которого определяет форму штриха. Изготовление реплик состоит в получении отпечатков дифракционной решетки на пластмассах с последующим нанесением на них отражающего металлического слоя. При изготовлении голографической дифракционной решетки на светочувствительном материале записывается интерференция двух когерентных лазерных пучков.

Дифракционные решетки используются не только в спектрографах. Они применяются в качестве селективно отражающих зеркал лазеров с перестраиваемой частотой излучения, а также в устройствах, обеспечивающих компрессию световых импульсов.

Для управления параметрами лазерного излучения используются фазовые решётки, представляющие собой регулярные области сжатий и разрежений в жидкостях или прозрачных твёрдых телах, сформированные путём возбуждения в них УЗ-волны.

Лит.: Борн М., Вольф Э. Основы оптики. 2-е изд. М., 1973; Лебедева В. В. Экспериментальная оптика. 3-е изд. М., 1994; Ахманов С. А., Никитин С. Ю. Физическая оптика. 2-е изд. М., 2004; Сивухин Д. В. Общий курс физики. 3-е изд. М., 2006. Т. 4: Оптика.

ОПРЕДЕЛЕНИЕ

Дифракционная решетка - это простейший спектральный прибор, состоящий из системы щелей (прозрачных для света участков), и непрозрачных промежутков, которые сравнимы с длиной волны.

Одномерная дифракционная решетка, состоит из параллельных щелей одинаковой ширины, которые лежат в одной плоскости, разделяемых одинаковыми по ширине непрозрачными для света промежутками. Лучшими считаются отражательные дифракционные решетки. Они состоят из совокупности участков, отражающих свет и участков, которые свет рассеивают. Данные решетки представляют собой отшлифованные металлические пластины, на которые рассеивающие свет штрихи нанесены резцом.

Картиной дифракции на решетке — является результат взаимной интерференции волн, идущих ото всех щелей. С помощью дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, подвергшихся дифракции и которые идут от всех щелей.

Характеристикой дифракционной решетки служит ее период. Периодом дифракционной решетки (d) (ее постоянной) называют величину, равную:

где a — ширина щели; b — ширина непрозрачного участка.

Дифракция на одномерной дифракционной решетке

Допустим, что перпендикулярно к плоскости дифракционной решетки падает световая волна с длиной . Так как щели у решетки расположены на равных расстояниях друг от друга, то разности хода лучей (), идущих от двух соседних щелей, для направления будут одинаковы для всей рассматриваемой дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Кроме главных минимумов, в результате взаимной интерференции лучей света, которые идут от двух щелей, в некоторых направлениях лучи гасят друг друга. В результате возникают дополнительные минимумы интенсивности. Они появляются в тех направлениях, где разность хода лучей составляют нечетное число полуволн. Условием дополнительных минимумов является формула:

где N - количество щелей дифракционной решетки; — целые значения кроме 0, В том случае, если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки является:

Величина синуса не может быть больше единицы, то количество главных максимумов:

Примеры решения задач по теме «Дифракционная решетка»

ПРИМЕР 1

Задание На дифракционную решетку, перпендикулярно ее поверхности падает монохроматический пучок света с длиной волны . На плоский экран картина дифракции проецируется при помощи линзы. Расстояние между двумя максимумами интенсивности первого порядка составляет l. Какова постоянная дифракционной решетки, если линза размещена в непосредственной близости от решетки и расстояние от нее до экрана равно L. Считайте, что


Решение В качестве основы для решения задачи используем формулу, которая связывает постоянную дифракционной решетки, длину волны света и угол отклонения лучей, который соответствует дифракционному максимуму номер m:

По условию задачи Так как угол отклонения лучей можно считать малым (), то примем, что:

Из рис.1 следует, что:

Подставим в формулу (1.1) выражение (1.3) и учтем, что , получим:

Из (1.4) выразим период решетки:

Ответ

ПРИМЕР 2

Задание Используя условия примера 1, и результат решения, найдите количество максимумов, которое даст рассматриваемая решетка.
Решение Для того чтобы определить максимальный угол отклонения лучей света в нашей задаче найдем число максимумов, которое может дать наша дифракционная решетка. Для этого используем формулу:

где положим, что при . Тогда, получим:

ОПРЕДЕЛЕНИЕ

Дифракционная решетка - это простейший спектральный прибор. Она содержит систему щелей, которые разделяют непрозрачные промежутки.

Дифракционные решетки подразделяют на одномерные и многомерные. Одномерная дифракционная решетка состоит из параллельных прозрачных для света участков одинаковой ширины, которые располагаются в одной плоскости. Прозрачные участки разделяют непрозрачные промежутки. При помощи данных решеток наблюдения проводят в проходящем свете.

Существуют отражающие дифракционные решетки. Такая решетка представляет собой, например, полированную (зеркальную) металлическую пластинку, на которую нанесены штрихи при помощи резца. В результате получают участки, которые отражают свет и участки, которые свет рассеивают. Наблюдение при помощи такой решетки проводят в отраженном свете.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Период дифракционной решетки

Если ширину щели на решетки обозначим a, ширину непрозрачного участка - b, тогда сумма данных двух параметров - это период решетки (d):

Период дифракционной решетки иногда называют еще постоянной дифракционной решетки. Период дифракционной решетки можно определить как расстояние, через которое происходит повтор штрихов на решетке.

Постоянную дифракционной решетки можно найти, если известно количество штрихов (N), которые имеет решетка на 1 мм своей длины:

Период дифракционной решетки входит в формулы, которые описывают картину дифракции на ней. Так, если монохроматическая волна падает на одномерную дифракционную решетку перпендикулярно к ее плоскости, то главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

где - угол между нормалью к решетке и направлением распространения дифрагированных лучей.

Кроме главных минимумов, в результате взаимной интерференции световых лучей, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, в результате появляются дополнительные минимумы интенсивности. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; принимает любые целые значения кроме 0, Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Величина синуса не может превышать единицу, следовательно, число главных максимумов (m):

Примеры решения задач

ПРИМЕР 1

Задание Сквозь дифракционную решетку проходит пучок света, имеющий длину волны . На расстоянии L от решетки размещается экран, на который при помощи линзы формируют картину дифракции. Получают, что первый максимум дифракции расположен на расстоянии x от центрального (рис.1). Каков период дифракционной решетки (d)?
Решение Сделаем рисунок.

В основу решения задачи положим условие для главных максимумов картины дифракции:

По условию задачи речь идет о первом главном максимуме, то . Из рис.1 получим, что:

Из выражений (1.2) и (1.1) имеем:

Выразим искомый период решетки, получаем:

Ответ

Дифракционная решетка –оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равностоящих друг от друга щелей. Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места – щели – будут пропускать свет, штрихи – рассеивать и не пропускать (рис. 3).

Рис. 3. Сечение дифракционной решетки (а) и ее графическое изображение (б)

Для вывода формулы рассмотрим дифракционную решетку при условии перпендикулярного падения света (рис. 4). Выберем два параллельных луча, прошедших две щели и направленных под углом φ к нормали.

С помощью собирающей линзы (глаза) эти два луча попадут в одну точку фокальной плоскости Р и результат их интерференции будет зависеть от разности фаз или от их разности хода. Если линза стоит перпендикулярно лучам, то разность хода будет определяться отрезком ВС, где АС – перпендикуляр к лучам А и В. В треугольнике АВС имеем: АВ = а + b = d – период решетки, ВАС = φ, как углы с взаимно перпендикулярными сторонами.

Из формул (8) и (9) получим формулу дифракционной решетки :

Рис. 4. Дифракция света на дифракционной решетке

Т.е. положение световой линии в дифракционном спектре не зависит от вещества решетки, а определяется периодом решетки, который равен сумме ширины щели и промежутка между щелями.

Разрешающая способность дифракционной решетки.

Если свет, падающий на дифракционную решетку полихроматический, т.е. состоит из нескольких длин волн, то в спектре максимумы отдельных  будут под разнымиуглами. Характеризовать разрешение можно угловой дисперсией:

Следовательно, угловая дисперсия тем больше, чем больше порядок спектра k.

II. Работа студентов во время практического занятия.

Задание 1.

Получить допуск к занятию. Для этого необходимо:

– иметь конспект в рабочей тетради, содержащий название работы, основные теоретические понятия изучаемой темы, задачи эксперимента, таблицу по образцу для внесения экспериментальных результатов;

– успешно пройти контроль по методике проведения эксперимента;

– получить у преподавателя разрешение выполнять экспериментальную часть работы.

Задание 2.

Выполнение лабораторной работы, обсуждение полученных результатов, оформление конспекта.

Приборы и принадлежности

Рис. 5 Схема установки

1. Дифракционная решетка.

2. Источник света.

4. Линейка.

В данной лабораторной работе предлагается определить длины волн для красного и зеленого цветов, которые получаются при прохождении света через дифракционную решетку. При этом на экране наблюдается дифракционный спектр. Дифракционная решетка состоит из большого числа параллельных щелей, очень малых по сравнению с длиной волны. Щели позволяют проходить свету, в то время как пространство между щелями непрозрачно. Общее количество щелей – N, с расстоянием между их центрами – d. Формула дифракционной решетки:

где d – период решетки; sin φ – синус угла отклонения от прямолинейного распространения света; k – порядок максимума; λ – длина волны света.

Экспериментальная установка состоит из дифракционной решетки, источника света и подвижного экрана с линейкой. На экране наблюдается дифракционный спектр (рис. 5).

Расстояние от дифракционной решетки до экрана L может изменяться перемещением экрана. Расстояние от центрального луча света до отдельной линии спектра l. При малых углах φ.