Дифференциальные уравнения первого порядка. Примеры решений

Дифференциальные уравнения первого порядка. Примеры решений.
Дифференциальные уравнения с разделяющимися переменными

Дифференциальные уравнения (ДУ). Эти два слова обычно приводят в ужас среднестатистического обывателя. Дифференциальные уравнения кажутся чем-то запредельным и трудным в освоении и многим студентам. Уууууу… дифференциальные уравнения, как бы мне всё это пережить?!

Такое мнение и такой настрой в корне неверен, потому что на самом деле ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ – ЭТО ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО . Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Чем качественнее изучены темы Производная функции одной переменной и Неопределенный интеграл , тем будет легче разобраться в дифференциальных уравнениях. Скажу больше, если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать. Также настоятельно рекомендую научиться находить .

В 95% случаев в контрольных работах встречаются 3 типа дифференциальных уравнений первого порядка: уравнения с разделяющимися переменными , которые мы рассмотрим на этом уроке; однородные уравнения и линейные неоднородные уравнения . Начинающим изучать диффуры советую ознакомиться с уроками именно в такой последовательности, причём после изучения первых двух статей не помешает закрепить свои навыки на дополнительном практикуме – уравнения, сводящихся к однородным .

Есть еще более редкие типы дифференциальных уравнений: уравнения в полных дифференциалах , уравнения Бернулли и некоторые другие. Наиболее важными из двух последних видов являются уравнения в полных дифференциалах, поскольку помимо данного ДУ я рассматриваю новый материалчастное интегрирование .

Если у вас в запасе всего день-два , то для сверхбыстрой подготовки есть блиц-курс в pdf-формате.

Итак, ориентиры расставлены – поехали:

Сначала вспомним обычные алгебраические уравнения . Они содержат переменные и числа. Простейший пример: . Что значит решить обычное уравнение? Это значит, найти множество чисел , которые удовлетворяют данному уравнению. Легко заметить, что детское уравнение имеет единственный корень: . Для прикола сделаем проверку, подставим найденный корень в наше уравнение:

– получено верное равенство, значит, решение найдено правильно.

Диффуры устроены примерно так же!

Дифференциальное уравнение первого порядка в общем случае содержит :
1) независимую переменную ;
2) зависимую переменную (функцию);
3) первую производную функции: .

В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная , и не было производных высших порядков – , и т.д.

Что значит ? Решить дифференциальное уравнение – это значит, найти множество всех функций , которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид (– произвольная постоянная), который называется общим решением дифференциального уравнения .

Пример 1

Решить дифференциальное уравнение

Полный боекомплект. С чего начать решение ?

В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно!

На втором шагесмотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки» , а в правой части организовать только «иксы» . Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п.

Дифференциалы и – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».

Следующий этап – интегрирование дифференциального уравнения . Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу достаточно записать один раз (т.к. константа + константа всё равно равна другой константе) . В большинстве случаев её помещают в правую часть.

Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения . То есть, – это общий интеграл.

Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение .

Пожалуйста, запомните первый технический приём , он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) тоже целесообразно записать под логарифмом .

То есть, ВМЕСТО записи обычно пишут .

Зачем это нужно? А для того, чтобы легче было выразить «игрек». Используем свойство логарифмов . В данном случае:

Теперь логарифмы и модули можно убрать:

Функция представлена в явном виде. Это и есть общее решение.

Ответ : общее решение: .

Ответы многих дифференциальных уравнений довольно легко проверить. В нашем случае это делается совсем просто, берём найденное решение и дифференцируем его:

После чего подставляем и производную в исходное уравнение :

– получено верное равенство, значит, общее решение удовлетворяет уравнению , что и требовалось проверить.

Придавая константе различные значения, можно получить бесконечно много частных решений дифференциального уравнения. Ясно, что любая из функций , , и т.д. удовлетворяет дифференциальному уравнению .

Иногда общее решение называют семейством функций . В данном примере общее решение – это семейство линейных функций, а точнее, семейство прямых пропорциональностей.

После обстоятельного разжевывания первого примера уместно ответить на несколько наивных вопросов о дифференциальных уравнениях:

1) В этом примере нам удалось разделить переменные. Всегда ли это можно сделать? Нет, не всегда. И даже чаще переменные разделить нельзя. Например, в однородных уравнениях первого порядка , необходимо сначала провести замену. В других типах уравнений, например, в линейном неоднородном уравнении первого порядка , нужно использовать различные приёмы и методы для нахождения общего решения. Уравнения с разделяющимися переменными, которые мы рассматриваем на первом уроке – простейший тип дифференциальных уравнений.

2) Всегда ли можно проинтегрировать дифференциальное уравнение? Нет, не всегда. Очень легко придумать «навороченное» уравнение, которое не проинтегрировать, кроме того, существуют неберущиеся интегралы. Но подобные ДУ можно решить приближенно с помощью специальных методов. Даламбер и Коши гарантируют... …тьфу, lurkmore.to давеча начитался, чуть не добавил «с того света».

3) В данном примере мы получили решение в виде общего интеграла . Всегда ли можно из общего интеграла найти общее решение, то есть, выразить «игрек» в явном виде? Нет не всегда. Например: . Ну и как тут выразить «игрек»?! В таких случаях ответ следует записать в виде общего интеграла. Кроме того, иногда общее решение найти можно, но оно записывается настолько громоздко и коряво, что уж лучше оставить ответ в виде общего интеграла

4) ...пожалуй, пока достаточно. В первом же примере нам встретился ещё один важный момент , но дабы не накрыть «чайников» лавиной новой информации, оставлю его до следующего урока.

Торопиться не будем. Еще одно простое ДУ и еще один типовой приём решения:

Пример 2

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

Решение : по условию требуется найти частное решение ДУ, удовлетворяющее заданному начальному условию. Такая постановка вопроса также называется задачей Коши .

Сначала находим общее решение. В уравнении нет переменной «икс», но это не должно смущать, главное, в нём есть первая производная.

Переписываем производную в нужном виде:

Очевидно, что переменные можно разделить, мальчики – налево, девочки – направо:

Интегрируем уравнение:

Общий интеграл получен. Здесь константу я нарисовал с надстрочной звездочкой, дело в том, что очень скоро она превратится в другую константу.

Теперь пробуем общий интеграл преобразовать в общее решение (выразить «игрек» в явном виде). Вспоминаем старое, доброе, школьное: . В данном случае:

Константа в показателе смотрится как-то некошерно, поэтому её обычно спускают с небес на землю. Если подробно, то происходит это так. Используя свойство степеней, перепишем функцию следующим образом:

Если – это константа, то – тоже некоторая константа, переообозначим её буквой :

Запомните «снос» константы – это второй технический приём , который часто используют в ходе решения дифференциальных уравнений.

Итак, общее решение: . Такое вот симпатичное семейство экспоненциальных функций.

На завершающем этапе нужно найти частное решение, удовлетворяющее заданному начальному условию . Это тоже просто.

В чём состоит задача? Необходимо подобрать такое значение константы , чтобы выполнялось условие .

Оформить можно по-разному, но понятнее всего, пожалуй, будет так. В общее решение вместо «икса» подставляем ноль, а вместо «игрека» двойку:



То есть,

Стандартная версия оформления:

Теперь в общее решение подставляем найденное значение константы :
– это и есть нужное нам частное решение.

Ответ : частное решение:

Выполним проверку. Проверка частного решение включает в себя два этапа:

Сначала необходимо проверить, а действительно ли найденное частное решение удовлетворяет начальному условию ? Вместо «икса» подставляем ноль и смотрим, что получится:
– да, действительно получена двойка, значит, начальное условие выполняется.

Второй этап уже знаком. Берём полученное частное решение и находим производную:

Подставляем и в исходное уравнение :


– получено верное равенство.

Вывод: частное решение найдено правильно.

Переходим к более содержательным примерам.

Пример 3

Решить дифференциальное уравнение

Решение: Переписываем производную в нужном нам виде:

Оцениваем, можно ли разделить переменные? Можно. Переносим второе слагаемое в правую часть со сменой знака:

И перекидываем множители по правилу пропорции:

Переменные разделены, интегрируем обе части:

Должен предупредить, приближается судный день. Если вы плохо изучили неопределенные интегралы , прорешали мало примеров, то деваться некуда – придется их осваивать сейчас.

Интеграл левой части легко найти , с интегралом от котангенса расправляемся стандартным приемом, который мы рассматривали на уроке Интегрирование тригонометрических функций в прошлом году:


В правой части у нас получился логарифм, и, согласно моей первой технической рекомендации, константу тоже следует записать под логарифмом.

Теперь пробуем упростить общий интеграл. Поскольку у нас одни логарифмы, то от них вполне можно (и нужно) избавиться. С помощью известных свойств максимально «упаковываем» логарифмы. Распишу очень подробно:

Упаковка завершена, чтобы быть варварски ободранной:

Можно ли выразить «игрек»? Можно. Надо возвести в квадрат обе части.

Но делать этого не нужно.

Третий технический совет: если для получения общего решения нужно возводить в степень или извлекать корни, то в большинстве случаев следует воздержаться от этих действий и оставить ответ в виде общего интеграла. Дело в том, что общее решение будет смотреться просто ужасно – с большими корнями, знаками и прочим трэшем.

Поэтому ответ запишем в виде общего интеграла. Хорошим тоном считается представить его в виде , то есть, в правой части, по возможности, оставить только константу. Делать это не обязательно, но всегда же выгодно порадовать профессора;-)

Ответ: общий интеграл:

! Примечание: общий интеграл любого уравнения можно записать не единственным способом. Таким образом, если ваш результат не совпал с заранее известным ответом, то это еще не значит, что вы неправильно решили уравнение.

Общий интеграл тоже проверяется довольно легко, главное, уметь находить производную от функции, заданной неявно . Дифференцируем ответ:

Умножаем оба слагаемых на :

И делим на :

Получено в точности исходное дифференциальное уравнение , значит, общий интеграл найден правильно.

Пример 4

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Это пример для самостоятельного решения.

Напоминаю, что алгоритм состоит из двух этапов:
1) нахождение общего решения;
2) нахождение требуемого частного решения.

Проверка тоже проводится в два шага (см. образец в Примере №2), нужно:
1) убедиться, что найденное частное решение удовлетворяет начальному условию;
2) проверить, что частное решение вообще удовлетворяет дифференциальному уравнению.

Полное решение и ответ в конце урока.

Пример 5

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Решение: Сначала найдем общее решение.Данное уравнение уже содержит готовые дифференциалы и , а значит, решение упрощается. Разделяем переменные:

Интегрируем уравнение:

Интеграл слева – табличный, интеграл справа – берем методом подведения функции под знак дифференциала :

Общий интеграл получен, нельзя ли удачно выразить общее решение? Можно. Навешиваем логарифмы на обе части. Поскольку они положительны, то знаки модуля излишни:

(Надеюсь, всем понятно преобразование , такие вещи надо бы уже знать)

Итак, общее решение:

Найдем частное решение, соответствующее заданному начальному условию .
В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Более привычное оформление:

Подставляем найденное значение константы в общее решение.

Ответ: частное решение:

Проверка: Сначала проверим, выполнено ли начальное условие :
– всё гуд.

Теперь проверим, а удовлетворяет ли вообще найденное частное решение дифференциальному уравнению. Находим производную:

Смотрим на исходное уравнение: – оно представлено в дифференциалах. Есть два способа проверки. Можно из найденной производной выразить дифференциал :

Подставим найденное частное решение и полученный дифференциал в исходное уравнение :

Используем основное логарифмическое тождество :

Получено верное равенство, значит, частное решение найдено правильно.

Второй способ проверки зеркален и более привычен: из уравнения выразим производную, для этого разделим все штуки на :

И в преобразованное ДУ подставим полученное частное решение и найденную производную . В результате упрощений тоже должно получиться верное равенство.

Пример 6

Решить дифференциальное уравнение . Ответ представить в виде общего интеграла .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Какие трудности подстерегают при решении дифференциальных уравнений с разделяющимися переменными?

1) Не всегда очевидно (особенно, «чайнику»), что переменные можно разделить. Рассмотрим условный пример: . Здесь нужно провести вынесение множителей за скобки: и отделить корни: . Как действовать дальше – понятно.

2) Сложности при самом интегрировании. Интегралы нередко возникают не самые простые, и если есть изъяны в навыках нахождения неопределенного интеграла , то со многими диффурами придется туго. К тому же у составителей сборников и методичек популярна логика «раз уж дифференциальное уравнение является простым, то пусть хоть интегралы будут посложнее».

3) Преобразования с константой. Как все заметили, с константой в дифференциальных уравнениях можно обращаться достаточно вольно, и некоторые преобразования не всегда понятны новичку. Рассмотрим ещё один условный пример: . В нём целесообразно умножить все слагаемые на 2: . Полученная константа – это тоже какая-то константа, которую можно обозначить через : . Да, и коль скоро в правой части логарифм, то константу целесообразно переписать в виде другой константы: .

Беда же состоит в том, что с индексами частенько не заморачиваются и используют одну и ту же букву . В результате запись решения принимает следующий вид:

Что за ересь? Тут же ошибки! Строго говоря – да. Однако с содержательной точки зрения – ошибок нет, ведь в результате преобразования варьируемой константы всё равно получается варьируемая константа.

Или другой пример, предположим, что в ходе решения уравнения получен общий интеграл . Такой ответ выглядит некрасиво, поэтому у каждого слагаемого целесообразно сменить знак: . Формально здесь опять ошибка – справа следовало бы записать . Но неформально подразумевается, что «минус цэ» – это всё равно константа (которая с тем же успехом принимает любые значения!) , поэтому ставить «минус» не имеет смысла и можно использовать ту же букву .

Я буду стараться избегать небрежного подхода, и всё-таки проставлять у констант разные индексы при их преобразовании.

Пример 7

Решить дифференциальное уравнение . Выполнить проверку.

Решение: Данное уравнение допускает разделение переменных. Разделяем переменные:

Интегрируем:

Константу тут не обязательно определять под логарифм, поскольку ничего путного из этого не получится.

Ответ: общий интеграл:

Проверка: Дифференцируем ответ (неявную функцию):

Избавляемся от дробей, для этого умножаем оба слагаемых на :

Получено исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Пример 8

Найти частное решение ДУ.
,

Это пример для самостоятельного решения. Единственная подсказка – здесь получится общий интеграл, и, правильнее говоря, нужно исхитриться найти не частное решение, а частный интеграл . Полное решение и ответ в конце урока.


Дифференциальным уравнением называется уравнение, связывающее независимую переменную x , искомую функцию y=f(x) и её производные y",y"",\ldots,y^{(n)} , т. е. уравнение вида


F(x,y,y",y"",\ldots,y^{(n)})=0.


Если искомая функция y=y(x) есть функция одной независимой переменной x , дифференциальное уравнение называется обыкновенным ; например,


\mathsf{1)}~\frac{dy}{dx}+xy=0, \quad \mathsf{2)}~y""+y"+x=\cos{x}, \quad \mathsf{3)}~(x^2-y^2)\,dx-(x+y)\,dy=0.


Когда искомая функция y есть функция двух и более независимых переменных, например, если y=y(x,t) , то уравнение вида


F\!\left(x,t,y,\frac{\partial{y}}{\partial{x}},\frac{\partial{y}}{\partial{t}},\ldots,\frac{\partial^m{y}}{\partial{x^k}\partial{t^l}}\right)=0


называется уравнением в частных производных. Здесь k,l - неотрицательные целые числа, такие, что k+l=m ; например

\frac{\partial{y}}{\partial{t}}-\frac{\partial{y}}{\partial{x}}=0, \quad \frac{\partial{y}}{\partial{t}}=\frac{\partial^2y}{\partial{x^2}}.


Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например, дифференциальное уравнение y"+xy=e^x - уравнение первого порядка, дифференциальное уравнение y""+p(x)y=0 , где p(x) - известная функция, - уравнение второго порядка; дифференциальное уравнение y^{(9)}-xy""=x^2 - уравнение 9-го порядка.


Решением дифференциального уравнения n-го порядка на интервале (a,b) называется функция y=\varphi(x) , определенная на интервале (a,b) вместе со своими производными до n-го порядка включительно, и такая, что подстановка функции y=\varphi(x) в дифференциальное уравнение превращает последнее в тождество по x на (a,b) . Например, функция y=\sin{x}+\cos{x} является решением уравнения y""+y=0 на интервале (-\infty,+\infty) . В самом деле, дифференцируя функцию дважды, будем иметь


y"=\cos{x}-\sin{x}, \quad y""=-\sin{x}-\cos{x}.


Подставляя выражения y"" и y в дифференциальное уравнение, получим тождество


-\sin{x}-\cos{x}+\sin{x}+\cos{x}\equiv0


График решения дифференциального уравнения называется интегральной кривой этого уравнения.


Общий вид уравнения первого порядка


F(x,y,y")=0.


Если уравнение (1) удается разрешить относительно y" , то получится уравнение первого порядка, разрешенное относительно производной.


y"=f(x,y).


Задачей Коши называют задачу нахождения решения y=y(x) уравнения y"=f(x,y) , удовлетворяющего начальному условию y(x_0)=y_0 (другая запись y|_{x=x_0}=y_0 ).


Геометрически это означает, что ищется интегральная кривая, проходящая через заданную
точку M_0(x_0,y_0) плоскости xOy (рис. 1).

Теорема существования и единственности решения задачи Коши

Пусть дано дифференциальное уравнение y"=f(x,y) , где функция f(x,y) определена в некоторой области D плоскости xOy , содержащей точку (x_0,y_0) . Если функция f(x,y) удовлетворяет условиям


а) f(x,y) есть непрерывная функция двух переменных x и y в области D ;


б) f(x,y) имеет частную производную , ограниченную в области D , то найдется интервал (x_0-h,x_0+h) , на котором существует единственное решение y=\varphi(x) данного уравнения, удовлетворяющее условию y(x_0)=y_0 .


Теорема дает достаточные условия существования единственного решения задачи Коши для уравнения y"=f(x,y) , но эти условия не являются необходимыми . Именно, может существовать единственное решение уравнения y"=f(x,y) , удовлетворяющее условию y(x_0)=y_0 , хотя в точке (x_0,y_0) не выполняются условия а) или б) или оба вместе.


Рассмотрим примеры.


1. y"=\frac{1}{y^2} . Здесь f(x,y)=\frac{1}{y^2},~\frac{\partial{f}}{\partial{y}}=-\frac{2}{y^3} . В точках (x_0,0) оси Ox условия а) и б) не выполняются (функция f(x,y) и её частная производная \frac{\partial{f}}{\partial{y}} разрывны на оси Ox и неограниченны при y\to0 ), но через каждую точку оси Ox проходит единственная интегральная кривая y=\sqrt{3(x-x_0)} (рис. 2).


2. y"=xy+e^{-y} . Правая часть уравнения f(x,y)=xy+e^{-y} и ее частная производная \frac{\partial{f}}{\partial{y}}=x-e^{-y} непрерывны по x и y во всех точках плоскости xOy . В силу теоремы существования и единственности областью, в которой данное уравнение имеет единственное решение
является вся плоскость xOy .



3. y"=\frac{3}{2}\sqrt{y^2} . Правая часть уравнения f(x,y)=\frac{3}{2}\sqrt{y^2} определена и непрерывна во всех точках плоскости xOy . Частная производная \frac{\partial{f}}{\partial{y}}=\frac{1}{\sqrt{y}} обращается в бесконечность при y=0 , т.е. на оси Ox , так что при y=0 нарушается условие б) теоремы существования и единственности. Следовательно, в точках оси Ox возможно нарушение единственности. Легко проверить, что функция есть решение данного уравнения. Кроме этого, уравнение имеет очевидное решение y\equiv0 . Таким образом, через каждую точку оси Ox проходит по крайней мере две интегральные линии и, следовательно, действительно в точках этой оси нарушается единственность (рис. 3).


Интегральными линиями данного уравнения будут также линии, составленные из кусков кубических парабол y=\frac{(x+c)^3}{8} и отрезков оси Ox , например, ABOC_1, ABB_2C_2, A_2B_2x и др., так что через каждую точку оси Ox проходит бесконечное множество интегральных линий.

Условие Липшица

Замечание. Условие ограниченности производной \partial{f}/\partial{y} , фигурирующее в теореме существования и единственности решения задачи Коши, может быть несколько ослаблено и заменено так называемым условием Липшица .


Говорят, что функция f(x,y) , определенная в некоторой области D , удовлетворяет в D условию Липшица по y , если существует такая постоянная L (постоянная Липшица ), что для любых y_1,y_2 из D и любого x из D справедливо неравенство


|f(x,y_2)-f(x,y_1)| \leqslant L|y_2-y_1|.


Существование в области D ограниченной производной \frac{\partial{f}}{\partial{y}} достаточно для того, чтобы функция f(x,y) удовлетворяла в D условию Липшица. Напротив, из условия Липшица не вытекает условие ограниченности \frac{\partial{f}}{\partial{y}} ; последняя может даже не существовать. Например, для уравнения y"=2|y|\cos{x} функция f(x,y)=2|y|\cos{x} не дифференцируема по y в точке (x_0,0),x_0\ne\frac{\pi}{2}+k\pi,k\in\mathbb{Z} , но условие Липшица в окрестности этой точки выполняется. В самом деле,


{|f(x,y_2)-f(x,y_1)|=L|2|y_2|\cos{x}-2|y_1|\cos{x}|=2|\cos{x}|\,||y_2|-|y_1||\leqslant2|y_2-y_1|.}


поскольку |\cos{x}|\leqslant1, а ||y_2|-|y_1||\leqslant|y_2-y_1| . Таким образом, условие Липшица выполняется с постоянной L=2 .

Теорема. Если функция f(x,y) непрерывна и удовлетворяет условию Липшица по y в области D , то задача Коши


\frac{dy}{dx}=f(x,y), \quad y|_{x=x_0}=y_0, \quad (x_0,y_0)\in{D}.


имеет единственное решение.

Условие Липшица является существенным для единственности решения задачи Коши. В качестве примера рассмотрим уравнение


\frac{dy}{dx}=\begin{cases}\dfrac{4x^3y}{x^4+y^4},&x^2+y^2>0,\\0,&x=y=0.\end{cases}


Нетрудно видеть, что функция f(x,y) непрерывна; с другой стороны,


f(x,Y)-f(x,y)=\frac{4x^3(x^4+yY)}{(x^4+y^2)(x^4+Y^2)}(Y-y).


Если y=\alpha x^2,~Y=\beta x^2, то


|f(x,Y)-f(x,y)|=\frac{4}{|x|}\frac{1-\alpha\beta}{(1+\alpha^2)(1+\beta^2)}|Y-y|,


и условие Липшица не удовлетворяется ни в одной области, содержащей начало координат O(0,0) , так как множитель при |Y-y| оказывается неограниченным при x\to0 .

Данное дифференциальное уравнение допускает решение y=C^2-\sqrt{x^4+C^4}, где C - произвольная постоянная. Отсюда видно, что существует бесконечное множество решений, удовлетворяющих начальному условию y(0)=0.


Общим решением дифференциального уравнения (2) называется функция


y=\varphi(x,C),


зависящая от одной произвольной постоянной C , и такая, что

1) она удовлетворяет уравнению (2) при любых допустимых значениях постоянной C;

2) каково бы ни было начальное условие


\Bigl.{y}\Bigr|_{x=x_0}=y_0,


можно подобрать такое значение C_0 постоянной C , что решение y=\varphi(x,C_0) будет удовлетворять заданному начальному условию (4). При этом предполагается, что точка (x_0,y_0) принадлежит области, где выполняются условия существования и единственности решения.

Частным решением дифференциального уравнения (2) называется решение, получаемое из общего решения (3) при каком-либо определенном значении произвольной постоянной C .

Пример 1. Проверить, что функция y=x+C есть общее решение дифференциального уравнения y"=1 и найти частное решение, удовлетворяющее начальному условию y|_{x=0}=0 . Дать геометрическое истолкование результата.


Решение. Функция y=x+C удовлетворяет данному уравнению при любых значениях произвольной постоянной C . В самом деле, y"=(x+C)"=1.


Зададим произвольное начальное условие y|_{x=x_0}=y_0 . Полагая x=x_0 и y=y_0 в равенстве y=x+C , найдем, что C=y_0-x_0 . Подставив это значение C в данную функцию, будем иметь y=x+y_0-x_0 . Эта функция удовлетворяет заданному начальному условию: положив x=x_0 , получим y=x_0+y_0-x_0=y_0 . Итак, функция y=x+C является общим решением данного уравнения.


В частности, полагая x_0=0 и y_0=0 , получим частное решение y=x .


Общее решение данного уравнения, т.е. функция y=x+C , определяет в плоскости xOy семейство параллельных прямых с угловым коэффициентом k=1 . Через каждую точку M_0(x_0,y_0) плоскости xOy проходит единственная интегральная линия y=x+y_0-x_0 . Частное решение y=x определяет одну из интегральных кривых, а именно прямую, проходящую через начало координат (рис.4).

Пример 2. Проверить, что функция y=Ce^x есть общее решение уравнения y"-y=0 и найти частное решение, удовлетворяющее начальному условию y|_{x=1}=-1. .


Решение. Имеем y=Ce^x,~y"=Ce^x . Подставляя в данное уравнение выражения y и y" , получаем Ce^x-Ce^x\equiv0 , т. е. функция y=Ce^x удовлетворяет данному уравнению при любых значениях постоянной C .


Зададим произвольное начальное условие y|_{x=x_0}=y_0 . Подставив x_0 и y_0 вместо x и y в функцию y=Ce^x , будем иметь y_0=Ce^{x_0} , откуда C=y_0e^{-x_0} . Функция y=y_0e^{x-x_0} удовлетворяет начальному условию. Действительно, полагая x=x_0 , получим y=y_0e^{x_0-x_0}=y_0 . Функция y=Ce^x есть общее решение данного уравнения.


При x_0=1 и y_0=-1 получим частное решение y=-e^{x-1} .


С геометрической точки зрения общее решение определяет семейство интегральных кривых, которыми являются графики показательных функций; частное решение есть интегральная кривая, проходящая через точку M_0(1;-1) (рис.5).


Соотношение вида \Phi(x,y,C)=0 , неявно определяющее общее решение, называется общим интегралом дифференциального уравнения первого порядка.


Соотношение, получаемое из общего интеграла при конкретном значении постоянной C , называется частным интегралом дифференциального уравнения.


Задача решения или интегрирования дифференциального уравнения состоит в нахождении общего решения или общего интеграла данного дифференциального уравнения. Если дополнительно задано начальное условие, то требуется выделить частное решение или частный интеграл, удовлетворяющие поставленному начальному условию.


Так как с геометрической точки зрения координаты x и y равноправны, то наряду с уравнением \frac{dx}{dy}=f(x,y) мы будем рассматривать уравнение \frac{dx}{dy}=\frac{1}{f(x,y)} .

Решение различных геометрических, физических и инженерных задач часто приводят к уравнениям, которые связывают независимые переменные, характеризующие ту ил иную задачу, с какой – либо функцией этих переменных и производными этой функции различных порядков.

В качестве примера можно рассмотреть простейший случай равноускоренного движения материальной точки.

Известно, что перемещение материальной точки при равноускоренном движении является функцией времени и выражается по формуле:

В свою очередь ускорение a является производной по времени t от скорости V , которая также является производной по времени t от перемещения S . Т.е.

Тогда получаем:
- уравнение связывает функцию f(t) с независимой переменной t и производной второго порядка функции f(t).

Определение. Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.

Определение. Если дифференциальное уравнение имеет одну независимую переменную, то оно называется обыкновенным дифференциальным уравнением , если же независимых переменных две или более, то такое дифференциальное уравнение называется дифференциальным уравнением в частных производных.

Определение. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения .

Пример.

- обыкновенное дифференциальное уравнение 1 – го порядка. В общем виде записывается
.

- обыкновенное дифференциальное уравнение 2 – го порядка. В общем виде записывается

- дифференциальное уравнение в частных производных первого порядка.

Определение. Общим решением дифференциального уравнения называется такая дифференцируемая функция y = (x, C), которая при подстановке в исходное уравнение вместо неизвестной функции обращает уравнение в тождество

Свойства общего решения.

1) Т.к. постоянная С – произвольная величина, то вообще говоря дифференциальное уравнение имеет бесконечное множество решений.

2) При каких- либо начальных условиях х = х 0 , у(х 0) = у 0 существует такое значение С = С 0 , при котором решением дифференциального уравнения является функция у = (х, С 0).

Определение. Решение вида у = (х, С 0) называется частным решением дифференциального уравнения.

Определение. Задачей Коши (Огюстен Луи Коши (1789-1857)- французский математик) называется нахождение любого частного решения дифференциального уравнения вида у = (х, С 0), удовлетворяющего начальным условиям у(х 0) = у 0 .

Теорема Коши. (теорема о существовании и единственности решения дифференциального уравнения 1- го порядка)

Если функция f (x , y ) непрерывна в некоторой области D в плоскости XOY и имеет в этой области непрерывную частную производную
, то какова бы не была точка (х
0 , у 0 ) в области D , существует единственное решение
уравнения
, определенное в некотором интервале, содержащем точку х
0 , принимающее при х = х 0 значение 0 ) = у 0 , т.е. существует единственное решение дифференциального уравнения.

Определение. Интегралом дифференциального уравнения называется любое уравнение, не содержащее производных, для которого данное дифференциальное уравнение является следствием.

Пример. Найти общее решение дифференциального уравнения
.

Общее решение дифференциального уравнения ищется с помощью интегрирования левой и правой частей уравнения, которое предварительно преобразовано следующим образом:

Теперь интегрируем:

- это общее решение исходного дифференциального уравнения.

Допустим, заданы некоторые начальные условия: x 0 = 1; y 0 = 2, тогда имеем

При подстановке полученного значения постоянной в общее решение получаем частное решение при заданных начальных условиях (решение задачи Коши).

Определение. Интегральной кривой называется график y = (x) решения дифференциального уравнения на плоскости ХОY.

Определение. Особым решением дифференциального уравнения называется такое решение, во всех точках которого условие единственности Коши (см. Теорема Коши. ) не выполняется, т.е. в окрестности некоторой точки (х, у) существует не менее двух интегральных кривых.

Особые решения не зависят от постоянной С.

Особые решения нельзя получить из общего решения ни при каких значениях постоянной С. Если построить семейство интегральных кривых дифференциального уравнения, то особое решение будет изображаться линией, которая в каждой своей точке касается по крайней мере одной интегральной кривой.

Отметим, что не каждое дифференциальное уравнение имеет особые решения.

Пример. Найти общее решение дифференциального уравнения:
Найти особое решение, если оно существует.

Данное дифференциальное уравнение имеет также особое решение у = 0. Это решение невозможно получить из общего, однако при подстановке в исходное уравнение получаем тождество. Мнение, что решение y = 0 можно получить из общего решения при С 1 = 0 ошибочно, ведь C 1 = e C 0.

Дифференциальным уравнением называется уравнение, связывающее независимую переменную x , искомую функцию y=f(x) и её производные y",y"",\ldots,y^{(n)} , т. е. уравнение вида

F(x,y,y",y"",\ldots,y^{(n)})=0.

Если искомая функция y=y(x) есть функция одной независимой переменной x , дифференциальное уравнение называется обыкновенным ; например,

\mathsf{1)}~\frac{dy}{dx}+xy=0, \quad \mathsf{2)}~y""+y"+x=\cos{x}, \quad \mathsf{3)}~(x^2-y^2)\,dx-(x+y)\,dy=0.

Когда искомая функция y есть функция двух и более независимых переменных, например, если y=y(x,t) , то уравнение вида

F\!\left(x,t,y,\frac{\partial{y}}{\partial{x}},\frac{\partial{y}}{\partial{t}},\ldots,\frac{\partial^m{y}}{\partial{x^k}\partial{t^l}}\right)=0


называется уравнением в частных производных. Здесь k,l - неотрицательные целые числа, такие, что k+l=m ; например

\frac{\partial{y}}{\partial{t}}-\frac{\partial{y}}{\partial{x}}=0, \quad \frac{\partial{y}}{\partial{t}}=\frac{\partial^2y}{\partial{x^2}}.

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например, дифференциальное уравнение y"+xy=e^x - уравнение первого порядка, дифференциальное уравнение y""+p(x)y=0 , где p(x) - известная функция, - уравнение второго порядка; дифференциальное уравнение y^{(9)}-xy""=x^2 - уравнение 9-го порядка.

Решением дифференциального уравнения n-го порядка на интервале (a,b) называется функция y=\varphi(x) , определенная на интервале (a,b) вместе со своими производными до n-го порядка включительно, и такая, что подстановка функции y=\varphi(x) в дифференциальное уравнение превращает последнее в тождество по x на (a,b) . Например, функция y=\sin{x}+\cos{x} является решением уравнения y""+y=0 на интервале (-\infty,+\infty) . В самом деле, дифференцируя функцию дважды, будем иметь

Y"=\cos{x}-\sin{x}, \quad y""=-\sin{x}-\cos{x}.

Подставляя выражения y"" и y в дифференциальное уравнение, получим тождество

-\sin{x}-\cos{x}+\sin{x}+\cos{x}\equiv0

График решения дифференциального уравнения называется интегральной кривой этого уравнения.

Общий вид уравнения первого порядка

F(x,y,y")=0.


Если уравнение (1) удается разрешить относительно y" , то получится уравнение первого порядка, разрешенное относительно производной.

Y"=f(x,y).

Задачей Коши называют задачу нахождения решения y=y(x) уравнения y"=f(x,y) , удовлетворяющего начальному условию y(x_0)=y_0 (другая запись y|_{x=x_0}=y_0 ).

Геометрически это означает, что ищется интегральная кривая, проходящая через заданную
точку M_0(x_0,y_0) плоскости xOy (рис. 1).

Теорема существования и единственности решения задачи Коши

Пусть дано дифференциальное уравнение y"=f(x,y) , где функция f(x,y) определена в некоторой области D плоскости xOy , содержащей точку (x_0,y_0) . Если функция f(x,y) удовлетворяет условиям

а) f(x,y) есть непрерывная функция двух переменных x и y в области D ;

б) f(x,y) имеет частную производную , ограниченную в области D , то найдется интервал (x_0-h,x_0+h) , на котором существует единственное решение y=\varphi(x) данного уравнения, удовлетворяющее условию y(x_0)=y_0 .

Теорема дает достаточные условия существования единственного решения задачи Коши для уравнения y"=f(x,y) , но эти условия не являются необходимыми . Именно, может существовать единственное решение уравнения y"=f(x,y) , удовлетворяющее условию y(x_0)=y_0 , хотя в точке (x_0,y_0) не выполняются условия а) или б) или оба вместе.

Рассмотрим примеры.

1. y"=\frac{1}{y^2} . Здесь f(x,y)=\frac{1}{y^2},~\frac{\partial{f}}{\partial{y}}=-\frac{2}{y^3} . В точках (x_0,0) оси Ox условия а) и б) не выполняются (функция f(x,y) и её частная производная \frac{\partial{f}}{\partial{y}} разрывны на оси Ox и неограниченны при y\to0 ), но через каждую точку оси Ox проходит единственная интегральная кривая y=\sqrt{3(x-x_0)} (рис. 2).

2. y"=xy+e^{-y} . Правая часть уравнения f(x,y)=xy+e^{-y} и ее частная производная \frac{\partial{f}}{\partial{y}}=x-e^{-y} непрерывны по x и y во всех точках плоскости xOy . В силу теоремы существования и единственности областью, в которой данное уравнение имеет единственное решение
является вся плоскость xOy .

3. y"=\frac{3}{2}\sqrt{y^2} . Правая часть уравнения f(x,y)=\frac{3}{2}\sqrt{y^2} определена и непрерывна во всех точках плоскости xOy . Частная производная \frac{\partial{f}}{\partial{y}}=\frac{1}{\sqrt{y}} обращается в бесконечность при y=0 , т.е. на оси Ox , так что при y=0 нарушается условие б) теоремы существования и единственности. Следовательно, в точках оси Ox возможно нарушение единственности. Легко проверить, что функция есть решение данного уравнения. Кроме этого, уравнение имеет очевидное решение y\equiv0 . Таким образом, через каждую точку оси Ox проходит по крайней мере две интегральные линии и, следовательно, действительно в точках этой оси нарушается единственность (рис. 3).

Интегральными линиями данного уравнения будут также линии, составленные из кусков кубических парабол y=\frac{(x+c)^3}{8} и отрезков оси Ox , например, ABOC_1, ABB_2C_2, A_2B_2x и др., так что через каждую точку оси Ox проходит бесконечное множество интегральных линий.

Условие Липшица

Замечание. Условие ограниченности производной \partial{f}/\partial{y} , фигурирующее в теореме существования и единственности решения задачи Коши, может быть несколько ослаблено и заменено так называемым условием Липшица .

Говорят, что функция f(x,y) , определенная в некоторой области D , удовлетворяет в D условию Липшица по y , если существует такая постоянная L (постоянная Липшица ), что для любых y_1,y_2 из D и любого x из D справедливо неравенство

|f(x,y_2)-f(x,y_1)| \leqslant L|y_2-y_1|.

Существование в области D ограниченной производной \frac{\partial{f}}{\partial{y}} достаточно для того, чтобы функция f(x,y) удовлетворяла в D условию Липшица. Напротив, из условия Липшица не вытекает условие ограниченности \frac{\partial{f}}{\partial{y}} ; последняя может даже не существовать. Например, для уравнения y"=2|y|\cos{x} функция f(x,y)=2|y|\cos{x} не дифференцируема по y в точке (x_0,0),x_0\ne\frac{\pi}{2}+k\pi,k\in\mathbb{Z} , но условие Липшица в окрестности этой точки выполняется. В самом деле,

{|f(x,y_2)-f(x,y_1)|=L|2|y_2|\cos{x}-2|y_1|\cos{x}|=2|\cos{x}|\,||y_2|-|y_1||\leqslant2|y_2-y_1|.}

поскольку |\cos{x}|\leqslant1, а ||y_2|-|y_1||\leqslant|y_2-y_1| . Таким образом, условие Липшица выполняется с постоянной L=2 .

Теорема. Если функция f(x,y) непрерывна и удовлетворяет условию Липшица по y в области D , то задача Коши

\frac{dy}{dx}=f(x,y), \quad y|_{x=x_0}=y_0, \quad (x_0,y_0)\in{D}.


имеет единственное решение.

Условие Липшица является существенным для единственности решения задачи Коши. В качестве примера рассмотрим уравнение

\frac{dy}{dx}=\begin{cases}\dfrac{4x^3y}{x^4+y^4},&x^2+y^2>0,\\0,&x=y=0.\end{cases}

Нетрудно видеть, что функция f(x,y) непрерывна; с другой стороны,

F(x,Y)-f(x,y)=\frac{4x^3(x^4+yY)}{(x^4+y^2)(x^4+Y^2)}(Y-y).

Если y=\alpha x^2,~Y=\beta x^2, то

|f(x,Y)-f(x,y)|=\frac{4}{|x|}\frac{1-\alpha\beta}{(1+\alpha^2)(1+\beta^2)}|Y-y|,


и условие Липшица не удовлетворяется ни в одной области, содержащей начало координат O(0,0) , так как множитель при |Y-y| оказывается неограниченным при x\to0 .

Данное дифференциальное уравнение допускает решение y=C^2-\sqrt{x^4+C^4}, где C - произвольная постоянная. Отсюда видно, что существует бесконечное множество решений, удовлетворяющих начальному условию y(0)=0.

Общим решением дифференциального уравнения (2) называется функция

Y=\varphi(x,C),


зависящая от одной произвольной постоянной C , и такая, что

1) она удовлетворяет уравнению (2) при любых допустимых значениях постоянной C;

2) каково бы ни было начальное условие

\Bigl.{y}\Bigr|_{x=x_0}=y_0,


можно подобрать такое значение C_0 постоянной C , что решение y=\varphi(x,C_0) будет удовлетворять заданному начальному условию (4). При этом предполагается, что точка (x_0,y_0) принадлежит области, где выполняются условия существования и единственности решения.

Частным решением дифференциального уравнения (2) называется решение, получаемое из общего решения (3) при каком-либо определенном значении произвольной постоянной C .


Пример 1. Проверить, что функция y=x+C есть общее решение дифференциального уравнения y"=1 и найти частное решение, удовлетворяющее начальному условию y|_{x=0}=0 . Дать геометрическое истолкование результата.

Решение. Функция y=x+C удовлетворяет данному уравнению при любых значениях произвольной постоянной C . В самом деле, y"=(x+C)"=1.

Зададим произвольное начальное условие y|_{x=x_0}=y_0 . Полагая x=x_0 и y=y_0 в равенстве y=x+C , найдем, что C=y_0-x_0 . Подставив это значение C в данную функцию, будем иметь y=x+y_0-x_0 . Эта функция удовлетворяет заданному начальному условию: положив x=x_0 , получим y=x_0+y_0-x_0=y_0 . Итак, функция y=x+C является общим решением данного уравнения.

В частности, полагая x_0=0 и y_0=0 , получим частное решение y=x .

Общее решение данного уравнения, т.е. функция y=x+C , определяет в плоскости xOy семейство параллельных прямых с угловым коэффициентом k=1 . Через каждую точку M_0(x_0,y_0) плоскости xOy проходит единственная интегральная линия y=x+y_0-x_0 . Частное решение y=x определяет одну из интегральных кривых, а именно прямую, проходящую через начало координат (рис.4).

Пример 2. Проверить, что функция y=Ce^x есть общее решение уравнения y"-y=0 и найти частное решение, удовлетворяющее начальному условию y|_{x=1}=-1. .


Решение. Имеем y=Ce^x,~y"=Ce^x . Подставляя в данное уравнение выражения y и y" , получаем Ce^x-Ce^x\equiv0 , т. е. функция y=Ce^x удовлетворяет данному уравнению при любых значениях постоянной C .

Зададим произвольное начальное условие y|_{x=x_0}=y_0 . Подставив x_0 и y_0 вместо x и y в функцию y=Ce^x , будем иметь y_0=Ce^{x_0} , откуда C=y_0e^{-x_0} . Функция y=y_0e^{x-x_0} удовлетворяет начальному условию. Действительно, полагая x=x_0 , получим y=y_0e^{x_0-x_0}=y_0 . Функция y=Ce^x есть общее решение данного уравнения.

При x_0=1 и y_0=-1 получим частное решение y=-e^{x-1} .

С геометрической точки зрения общее решение определяет семейство интегральных кривых, которыми являются графики показательных функций; частное решение есть интегральная кривая, проходящая через точку M_0(1;-1) (рис.5).

Соотношение вида \Phi(x,y,C)=0 , неявно определяющее общее решение, называется общим интегралом дифференциального уравнения первого порядка.

Соотношение, получаемое из общего интеграла при конкретном значении постоянной C , называется частным интегралом дифференциального уравнения.

Задача решения или интегрирования дифференциального уравнения состоит в нахождении общего решения или общего интеграла данного дифференциального уравнения. Если дополнительно задано начальное условие, то требуется выделить частное решение или частный интеграл, удовлетворяющие поставленному начальному условию.

Так как с геометрической точки зрения координаты x и y равноправны, то наряду с уравнением \frac{dx}{dy}=f(x,y) мы будем рассматривать уравнение \frac{dx}{dy}=\frac{1}{f(x,y)} .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Эта статья является отправной точкой в изучении теории дифференциальных уравнений. Здесь собраны основные определения и понятия, которые будут постоянно фигурировать в тексте. Для лучшего усвоения и понимания определения снабжены примерами.

Дифференциальное уравнение (ДУ) – это уравнение, в которое входит неизвестная функция под знаком производной или дифференциала.

Если неизвестная функция является функцией одной переменной, то дифференциальное уравнение называют обыкновенным (сокращенно ОДУ – обыкновенное дифференциальное уравнение). Если же неизвестная функция есть функция многих переменных, то дифференциальное уравнение называют уравнением в частных производных .

Максимальный порядок производной неизвестной функции, входящей в дифференциальное уравнение, называется порядком дифференциального уравнения .


Вот примеры ОДУ первого, второго и пятого порядков соответственно

В качестве примеров уравнений в частных производных второго порядка приведем

Далее мы будем рассматривать только обыкновенные дифференциальные уравнения n-ого порядка вида или , где Ф(x, y) = 0 неизвестная функция, заданная неявно (когда возможно, будем ее записывать в явном представлении y = f(x) ).

Процесс нахождения решений дифференциального уравнения называется интегрированием дифференциального уравнения .

Решение дифференциального уравнения - это неявно заданная функция Ф(x, y) = 0 (в некоторых случаях функцию y можно выразить через аргумент x явно), которая обращает дифференциальное уравнение в тождество.

ОБРАТИТЕ ВНИМАНИЕ.

Решение дифференциального уравнения всегда ищется на заранее заданном интервале X .

Почему мы об этом говорим отдельно? Да потому что в условиях многих задач об интервале X не упоминают. То есть, обычно условие задач формулируется так: «найдите решение обыкновенного дифференциального уравнения ». В этом случае подразумевается, что решение следует искать для всех x , при которых и искомая функция y , и исходное уравнение имеют смысл.

Решение дифференциального уравнения часто называют интегралом дифференциального уравнения .

Функции или можно назвать решением дифференциального уравнения .

Одним из решений дифференциального уравнения является функция . Действительно, подставив эту функцию в исходное уравнение, получим тождество . Несложно заметить, что другим решением этого ОДУ является, например, . Таким образом, дифференциальные уравнения могут иметь множество решений.


Общее решение дифференциального уравнения – это множество решений, содержащее все без исключения решения этого дифференциального уравнения.

Общее решение дифференциального уравнения еще называют общим интегралом дифференциального уравнения .

Вернемся к примеру. Общее решение дифференциального уравнения имеет вид или , где C – произвольная постоянная. Выше мы указали два решения этого ОДУ, которые получаются из общего интеграла дифференциального уравнения при подстановке С = 0 и C = 1 соответственно.

Если решение дифференциального уравнения удовлетворяет изначально заданным дополнительным условиям, то его называют частным решением дифференциального уравнения .

Частным решением дифференциального уравнения , удовлетворяющим условию y(1)=1 , является . Действительно, и .

Основными задачами теории дифференциальных уравнений являются задачи Коши, краевые задачи и задачи нахождения общего решения дифференциального уравнения на каком-либо заданном интервале X .

Задача Коши – это задача нахождения частного решения дифференциального уравнения, удовлетворяющего заданным начальным условиям , где - числа.

Краевая задача – это задача нахождения частного решения дифференциального уравнения второго порядка, удовлетворяющего дополнительным условиям в граничных точках x 0 и x 1 :
f (x 0) = f 0 , f (x 1) = f 1 , где f 0 и f 1 - заданные числа.

Краевую задачу часто называют граничной задачей .

Обыкновенное дифференциальное уравнение n-ого порядка называется линейным , если оно имеет вид , а коэффициенты есть непрерывные функции аргумента x на интервале интегрирования.