Найти общее решение линейной однородной системы. Решение однородных систем линейных уравнений

Мы продолжим шлифовать технику элементарных преобразований на однородной системе линейных уравнений .
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.

Что такое однородная система линейных уравнений?

Ответ напрашивается сам собой. Система линейных уравнений является однородной, если свободный член каждого уравнения системы равен нулю. Например:

Совершенно ясно, что однородная система всегда совместна , то есть всегда имеет решение. И, прежде всего, в глаза бросается так называемое тривиальное решение . Тривиальное, для тех, кто совсем не понял смысл прилагательного, значит, беспонтовое. Не академично, конечно, но зато доходчиво =) …Чего ходить вокруг да около, давайте выясним, нет ли у данной системы каких-нибудь других решений:

Пример 1


Решение : чтобы решить однородную систему необходимо записать матрицу системы и с помощью элементарных преобразований привести её к ступенчатому виду. Обратите внимание, что здесь отпадает необходимость записывать вертикальную черту и нулевой столбец свободных членов – ведь что ни делай с нулями, они так и останутся нулями:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3.

(2) К третьей строке прибавили вторую строку, умноженную на –1.

Делить третью строку на 3 не имеет особого смысла.

В результате элементарных преобразований получена эквивалентная однородная система , и, применяя обратный ход метода Гаусса, легко убедиться, что решение единственно.

Ответ :

Сформулируем очевидный критерий : однородная система линейных уравнений имеет только тривиальное решение , если ранг матрицы системы (в данном случае 3) равен количеству переменных (в данном случае – 3 шт.).

Разогреваемся и настраиваем свой радиоприёмник на волну элементарных преобразований:

Пример 2

Решить однородную систему линейных уравнений

Чтобы окончательно закрепить алгоритм, разберём финальное задание:

Пример 7

Решить однородную систему, ответ записать в векторной форме.

Решение : запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

(1) У первой строки сменили знак. Ещё раз заостряю внимание на неоднократно встречавшемся приёме, который позволяет существенно упростить следующее действие.

(1) Ко 2-й и 3-й строкам прибавили первую строку. К 4-й строке прибавили первую строку, умноженную на 2.

(3) Последние три строки пропорциональны, две из них удалили.

В результате получена стандартная ступенчатая матрица, и решение продолжается по накатанной колее:

– базисные переменные;
– свободные переменные.

Выразим базисные переменные через свободные переменные. Из 2-го уравнения:

– подставим в 1-е уравнение:

Таким образом, общее решение:

Поскольку в рассматриваемом примере три свободные переменные, то фундаментальная система содержит три вектора.

Подставим тройку значений в общее решение и получим вектор , координаты которого удовлетворяют каждому уравнению однородной системы. И снова повторюсь, что крайне желательно проверять каждый полученный вектор – времени займет не так много, а от ошибок убережёт стопроцентно.

Для тройки значений находим вектор

И, наконец, для тройки получаем третий вектор:

Ответ : , где

Желающие избежать дробных значений могут рассмотреть тройки и получить ответ в эквивалентном виде:

К слову о дробях. Посмотрим на полученную в задаче матрицу и зададимся вопросом – нельзя ли упростить дальнейшее решение? Ведь здесь мы сначала выразили через дроби базисную переменную , потом через дроби базисную переменную , и, надо сказать, процесс это был не самый простой и не самый приятный.

Второй вариант решения :

Идея состоит в том, чтобы попытаться выбрать другие базисные переменные . Посмотрим на матрицу и заметим две единицы в третьем столбце. Так почему бы не получить ноль вверху? Проведём ещё одно элементарное преобразование:

Ещё в школе каждый из нас изучал уравнения и, наверняка, системы уравнений. Но не многие знают, что существует несколько способов их решения. Сегодня мы подробно разберём все методы решения системы линейных алгебраических уравнений, которые состоят более чем из двух равенств.

История

На сегодняшний день известно, что искусство решать уравнения и их системы зародилось ещё в Древнем Вавилоне и Египте. Однако равенства в их привычном для нас виде появились после возникновения знака равенства "=", который был введён в 1556 году английским математиком Рекордом. Кстати, этот знак был выбран не просто так: он означает два параллельных равных отрезка. И правда, лучшего примера равенства не придумать.

Основоположником современных буквенных обозначений неизвестных и знаков степеней является французский математик Однако его обозначения значительно отличались от сегодняшних. Например, квадрат неизвестного числа он обозначал буквой Q (лат."quadratus"), а куб - буквой C (лат. "cubus"). Эти обозначения сейчас кажутся неудобными, но тогда это был наиболее понятный способ записать системы линейных алгебраических уравнений.

Однако недостатком в тогдашних методах решения было то, что математики рассматривали только положительные корни. Возможно, это связано с тем, что отрицательные значения не имели никакого практического применения. Так или иначе, но первыми считать отрицательные корни начали именно итальянские математики Никколо Тарталья, Джероламо Кардано и Рафаэль Бомбелли в 16 веке. А современный вид, основной метод решения (через дискриминант) был создан только в 17 веке благодаря работам Декарта и Ньютона.

В середине 18 века швейцарский математик Габриэль Крамер нашёл новый способ для того, чтобы сделать решение систем линейных уравнений проще. Этот способ был впоследствии назван его именем и по сей день мы пользуемся им. Но о методе Крамера поговорим чуть позднее, а пока обсудим линейные уравнения и методы их решения отдельно от системы.

Линейные уравнения

Линейные уравнения - самые простые равенства с переменной (переменными). Их относят к алгебраическим. записывают в общем виде так: а 1 *x 1 +а 2* x 2 +...а n *x n =b. Представление их в этом виде нам понадобится при составлении систем и матриц далее.

Системы линейных алгебраических уравнений

Определение этого термина такое: это совокупность уравнений, которые имеют общие неизвестные величины и общее решение. Как правило, в школе все решали системы с двумя или даже тремя уравнениями. Но бывают системы с четырьмя и более составляющими. Давайте разберёмся сначала, как следует их записать так, чтобы в дальнейшем было удобно решать. Во-первых, системы линейных алгебраических уравнений будут выглядеть лучше, если все переменные будут записаны как x с соответствующим индексом: 1,2,3 и так далее. Во-вторых, следует привести все уравнения к каноническому виду: а 1 *x 1 +а 2* x 2 +...а n *x n =b.

После всех этих действий мы можем начать рассказывать, как находить решение систем линейных уравнений. Очень сильно для этого нам пригодятся матрицы.

Матрицы

Матрица - это таблица, которая состоит из строк и столбцов, а на их пересечении находятся её элементы. Это могут быть либо конкретные значения, либо переменные. Чаще всего, чтобы обозначить элементы, под ними расставляют нижние индексы (например, а 11 или а 23). Первый индекс означает номер строки, а второй - столбца. Над матрицами, как и над любым другим математическим элементом можно совершать различные операции. Таким образом, можно:

2) Умножать матрицу на какое-либо число или вектор.

3) Транспонировать: превращать строчки матрицы в столбцы, а столбцы - в строчки.

4) Умножать матрицы, если число строк одной их них равно количеству столбцов другой.

Подробнее обсудим все эти приёмы, так как они пригодятся нам в дальнейшем. Вычитание и сложение матриц происходит очень просто. Так как мы берём матрицы одинакового размера, то каждый элемент одной таблицы соотносится с каждым элементом другой. Таким образом складываем (вычитаем) два этих элемента (важно, чтобы они стояли на одинаковых местах в своих матрицах). При умножении матрицы на число или вектор необходимо просто умножить каждый элемент матрицы на это число (или вектор). Транспонирование - очень интересный процесс. Очень интересно иногда видеть его в реальной жизни, например, при смене ориентации планшета или телефона. Значки на рабочем столе представляют собой матрицу, а при перемене положения она транспонируется и становится шире, но уменьшается в высоте.

Разберём ещё такой процесс, как Хоть он нам и не пригодится, но знать его будет всё равно полезно. Умножить две матрицы можно только при условии, что число столбцов одной таблицы равно числу строк другой. Теперь возьмём элементы строчки одной матрицы и элементы соответствующего столбца другой. Перемножим их друг на друга и затем сложим (то есть, например, произведение элементов a 11 и а 12 на b 12 и b 22 будет равно: а 11 *b 12 + а 12 *b 22). Таким образом, получается один элемент таблицы, и аналогичным методом она заполняется далее.

Теперь можем приступить к рассмотрению того, как решается система линейных уравнений.

Метод Гаусса

Этой тему начинают проходить еще в школе. Мы хорошо знаем понятие "система двух линейных уравнений" и умеем их решать. Но что делать, если число уравнений больше двух? В этом нам поможет

Конечно, этим методом удобно пользоваться, если сделать из системы матрицу. Но можно и не преобразовывать её и решать в чистом виде.

Итак, как решается этим методом система линейных уравнений Гаусса? Кстати, хоть этот способ и назван его именем, но открыли его ещё в древности. Гаусс предлагает следующее: проводить операции с уравнениями, чтобы в конце концов привести всю совокупность к ступенчатому виду. То есть, нужно, чтобы сверху вниз (если правильно расставить) от первого уравнения к последнему убывало по одному неизвестному. Иными словами, нужно сделать так, чтобы у нас получилось, скажем, три уравнения: в первом - три неизвестных, во втором - два, в третьем - одно. Тогда из последнего уравнения мы находим первое неизвестное, подставляем его значение во второе или первое уравнение, и далее находим оставшиеся две переменные.

Метод Крамера

Для освоения этого метода жизненно необходимо владеть навыками сложения, вычитания матриц, а также нужно уметь находить определители. Поэтому, если вы плохо всё это делаете или совсем не умеете, придется поучиться и потренироваться.

В чём суть этого метода, и как сделать так, чтобы получилась система линейных уравнений Крамера? Всё очень просто. Мы должны построить матрицу из численных (практически всегда) коэффициентов системы линейных алгебраических уравнений. Для этого просто берём числа перед неизвестными и расставляем в таблицу в том порядке, как они записаны в системе. Если перед числом стоит знак "-", то записываем отрицательный коэффициент. Итак, мы составили первую матрицу из коэффициентов при неизвестных, не включая числа после знаков равенства (естественно, что уравнение должно быть приведено к каноническому виду, когда справа находится только число, а слева - все неизвестные с коэффициентами). Затем нужно составить ещё несколько матриц - по одной для каждой переменной. Для этого заменяем в первой матрице по очереди каждый столбец с коэффициентами столбцом чисел после знака равенства. Таким образом получаем несколько матриц и далее находим их определители.

После того как мы нашли определители, дело за малым. У нас есть начальная матрица, и есть несколько полученных матриц, которые соответствуют разным переменным. Чтобы получить решения системы, мы делим определитель полученной таблицы на определитель начальной таблицы. Полученное число и есть значение одной из переменных. Аналогично находим все неизвестные.

Другие методы

Существует ещё несколько методов для того, чтобы получить решение систем линейных уравнений. Например, так называемый метод Гаусса-Жордана, который применяется для нахождения решений системы квадратных уравнений и тоже связан с применением матриц. Существует также метод Якоби для решения системы линейных алгебраических уравнений. Он легче всех адаптируется для компьютера и применяется в вычислительной технике.

Сложные случаи

Сложность обычно возникает, если число уравнений меньше числа переменных. Тогда можно наверняка сказать, что, либо система несовместна (то есть не имеет корней), или количество её решений стремится к бесконечности. Если у нас второй случай - то нужно записать общее решение системы линейных уравнений. Оно будет содержать как минимум одну переменную.

Заключение

Вот мы и подошли к концу. Подведём итоги: мы разобрали, что такое система и матрица, научились находить общее решение системы линейных уравнений. Помимо этого рассмотрели другие варианты. Выяснили, как решается система линейных уравнений: метод Гаусса и Поговорили о сложных случаях и других способах нахождения решений.

На самом деле эта тема гораздо более обширна, и если вы хотите лучше в ней разобраться, то советуем почитать больше специализированной литературы.

Пусть М 0 – множество решений однородной системы (4) линейных уравнений.

Определение 6.12. Векторы с 1 , с 2 , …, с p , являющиеся решениями однородной системы линейных уравнений называются фундаментальным набором решений (сокращенно ФНР), если

1) векторы с 1 , с 2 , …, с p линейно независимы (т. е. ни один из них нельзя выразить через другие);

2) любое другое решение однородной системы линейных уравнений можно выразить через решения с 1 , с 2 , …, с p .

Заметим, что если с 1 , с 2 , …, с p – какой-либо ф.н.р., то выражением k 1 ×с 1 + k 2 ×с 2 + … + k p ×с p можно описать все множество М 0 решений системы (4), поэтому его называют общим видом решения системы (4).

Теорема 6.6. Любая неопределенная однородная система линейных уравнений обладает фундаментальным набором решений.

Способ нахождения фундаментального набора решений состоит в следующем:

Найти общее решение однородной системы линейных уравнений;

Построить (n r ) частных решений этой системы, при этом значения свободных неизвестных должны образовывать единичную матрицу;

Выписать общий вид решения, входящего в М 0 .

Пример 6.5. Найти фундаментальный набор решений следующей системы:

Решение . Найдем общее решение этой системы.

~ ~ ~ ~ Þ Þ Þ В этой системе пять неизвестных (n = 5), из них главных неизвестных два (r = 2), свободных неизвестных три (n r ), то есть в фундаментальном наборе решений содержится три вектора решения. Построим их. Имеем x 1 и x 3 – главные неизвестные, x 2 , x 4 , x 5 – свободные неизвестные

Значения свободных неизвестных x 2 , x 4 , x 5 образуют единичную матрицу E третьего порядка. Получили, что векторы с 1 , с 2 , с 3 образуют ф.н.р. данной системы. Тогда множество решений данной однородной системы будет М 0 = {k 1 ×с 1 + k 2 ×с 2 + k 3 ×с 3 , k 1 , k 2 , k 3 Î R}.

Выясним теперь условия существования ненулевых решений однородной системы линейных уравнений, другими словами условия существования фундаментального набора решений.

Однородная система линейных уравнений имеет ненулевые решения, то есть является неопределенной, если

1) ранг основной матрицы системы меньше числа неизвестных;

2) в однородной системе линейных уравнений число уравнений меньше числа неизвестных;

3) если в однородной системе линейных уравнений число уравнений равно числу неизвестных, и определитель основной матрицы равен нулю (т. е. |A | = 0).

Пример 6.6 . При каком значении параметра a однородная система линейных уравнений имеет ненулевые решения?

Решение . Составим основную матрицу этой системы и найдем ее определитель: = = 1×(–1) 1+1 × = –а – 4. Определитель этой матрицы равен нулю при a = –4.

Ответ : –4.

7. Арифметическое n -мерное векторное пространство

Основные понятия

В предыдущих разделах уже встречалось понятие о наборе из действительных чисел, расположенных в определенном порядке. Это матрица-строка (или матрица-столбец) и решение системы линейных уравнений с n неизвестными. Эти сведения можно обобщить.

Определение 7.1. n -мерным арифметическим вектором называется упорядоченный набор из n действительных чисел.

Значит а = (a 1 , a 2 , …, a n ), где a i Î R, i = 1, 2, …, n – общий вид вектора. Число n называется размерностью вектора, а числа a i называются его координатами .

Например: а = (1, –8, 7, 4, ) – пятимерный вектор.

Все множество n -мерных векторов принято обозначать как R n .

Определение 7.2. Два вектора а = (a 1 , a 2 , …, a n ) и b = (b 1 , b 2 , …, b n ) одинаковой размерности равны тогда и только тогда, когда равны их соответствующие координаты, т. е. a 1 = b 1 , a 2 = b 2 , …, a n = b n .

Определение 7.3. Суммой двух n -мерных векторов а = (a 1 , a 2 , …, a n ) и b = (b 1 , b 2 , …, b n ) называется вектор a + b = (a 1 + b 1 , a 2 + b 2 , …, a n + b n ).

Определение 7.4. Произведением действительного числа k на вектор а = (a 1 , a 2 , …, a n ) называется вектор k ×а = (k ×a 1 , k ×a 2 , …, k ×a n )

Определение 7.5. Вектор о = (0, 0, …, 0) называется нулевым (или нуль–вектором ).

Легко проверить, что действия (операции) сложения векторов и умножения их на действительное число обладают следующими свойствами: " a , b , c Î R n , " k , l Î R:

1) a + b = b + a ;

2) a + (b + c ) = (a + b ) + c ;

3) a + о = a ;

4) a + (–a ) = о ;

5) 1×a = a , 1 Î R;

6) k ×(l ×a ) = l ×(k ×a ) = (l ×k a ;

7) (k + l a = k ×a + l ×a ;

8) k ×(a + b ) = k ×a + k ×b .

Определение 7.6. Множество R n с заданными на нем операциями сложения векторов и умножения их на действительное число называется арифметическим n-мерным векторным пространством .

Даны матрицы

Найти: 1) aA - bB,

Решение : 1) Находим последовательно, используя правила умножения матрицы на число и сложения матриц..


2. Найдите А*В, если

Решение : Используем правило умножения матриц

Ответ:

3. Для заданной матрицы найдите минор М 31 и вычислите определитель.

Решение : Минор М 31 – это определитель матрицы, которая получается из А

после вычеркивания строки 3 и столбца 1. Находим

1*10*3+4*4*4+1*1*2-2*4*10-1*1*4-1*4*3 = 0.

Преобразуем матрицу А, не изменяя её определителя (сделаем нули в строке 1)

-3*, -, -4*
-10 -15
-20 -25
-4 -5

Теперь вычисляем определитель матрицы А разложением по строке 1


Ответ: М 31 = 0, detA = 0

Pешить методом Гаусса и методом Крамера.

2х 1 + х 2 + x 3 = 2

x 1 + х 2 + 3x 3 = 6

2x 1 + x 2 + 2x 3 = 5

Решение : Проверим


Можно применить метод Крамера


Решение системы: х 1 = D 1 /D = 2, х 2 = D 2 /D = -5, х 3 = D 3 /D = 3

Применим метод Гаусса.

Расширенную матрицу системы приведём к треугольному виду.

Для удобства вычислений поменяем строки местами:

Умножим 2-ю строку на (k = -1 / 2 = -1 / 2 ) и добавим к 3-й:

1 / 2 7 / 2

Умножим 1-ю строку на (k = -2 / 2 = -1 ) и добавим к 2-й:

Теперь исходную систему можно записать как:

x 1 = 1 - (1 / 2 x 2 + 1 / 2 x 3)

x 2 = 13 - (6x 3)

Из 2-ой строки выражаем

Из 1-ой строки выражаем

Решение то же.

Ответ: (2 ; -5 ; 3)

Найти общее решение системы и ФСР

13х 1 – 4х 2 – х 3 - 4х 4 - 6х 5 = 0

11х 1 – 2х 2 + х 3 - 2х 4 - 3х 5 = 0

5х 1 + 4х 2 + 7х 3 + 4х 4 + 6х 5 = 0

7х 1 + 2х 2 + 5х 3 + 2х 4 + 3х 5 = 0

Решение : Применим метод Гаусса. Расширенную матрицу системы приведём к треугольному виду.

-4 -1 -4 -6
-2 -2 -3
x 1 x 2 x 3 x 4 x 5

Умножим 1-ю строку на (-11). Умножим 2-ю строку на (13). Добавим 2-ю строку к 1-й:

-2 -2 -3

Умножим 2-ю строку на (-5). Умножим 3-ю строку на (11). Добавим 3-ю строку к 2-й:

Умножим 3-ю строку на (-7). Умножим 4-ю строку на (5). Добавим 4-ю строку к 3-й:

Второе уравнение есть линейная комбинация остальных

Найдем ранг матрицы.

-18 -24 -18 -27
x 1 x 2 x 3 x 4 x 5

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), следовательно rang(A) = 2.

Этот минор является базисным. В него вошли коэффициенты при неизвестных x 1 ,x 2 , значит, неизвестные x 1 ,x 2 – зависимые (базисные), а x 3 ,x 4 ,x 5 – свободные.

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:

18x 2 = 24x 3 + 18x 4 + 27x 5

7x 1 + 2x 2 = - 5x 3 - 2x 4 - 3x 5

Методом исключения неизвестных находим общее решение :

x 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5

x 1 = - 1 / 3 x 3

Находим фундаментальную систему решений (ФСР), которая состоит из (n-r) решений. В нашем случае n=5, r=2, следовательно, фундаментальная система решений состоит из 3-х решений, причем эти решения должны быть линейно независимыми.

Чтобы строки были линейно независимыми, необходимо и достаточно, чтобы ранг матрицы, составленной из элементов строк, был равен количеству строк, то есть 3.

Достаточно придать свободным неизвестным x 3 ,x 4 ,x 5 значения из строк определителя 3-го порядка, отличного от нуля, и подсчитать x 1 ,x 2 .

Простейшим определителем, отличным от нуля, является единичная матрица.

Но здесь удобнее взять

Находим, используя общее решение:

а) х 3 = 6, х 4 = 0, х 5 = 0 Þ х 1 = - 1 / 3 x 3 = -2, х 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5 = -4 Þ

I решение ФСР: (-2; -4; 6; 0;0)

б) х 3 = 0, х 4 = 6, х 5 = 0 Þ х 1 = - 1 / 3 x 3 = 0, х 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5 = - 6 Þ

II решение ФСР: (0; -6; 0; 6;0)

в) х 3 = 0, х 4 = 0, х 5 = 6 Þ х 1 = - 1 / 3 x 3 = 0, х 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5 = -9 Þ

III решение ФСР: (0; - 9; 0; 0;6)

Þ ФСР: (-2; -4; 6; 0;0), (0; -6; 0; 6;0), (0; - 9; 0; 0;6)

6. Дано: z 1 = -4 + 5i, z 2 = 2 – 4i. Найти: a) z 1 – 2z 2 б) z 1 z 2 в) z 1 /z 2

Решение : a) z 1 – 2z 2 = -4+5i+2(2-4i) = -4+5i+4-8i = -3i

б) z 1 z 2 = (-4+5i)(2-4i) = -8+10i+16i-20i 2 = {i 2 = -1} = 12 + 26i


Ответ: а) -3i б) 12+26i в) -1.4 – 0.3i

Линейное уравнение называется однородным , если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений, называется однородной и имеет общий вид:

Очевидно, что всякая однородная система совместна и имеет нулевое (тривиальное) решение. Поэтому применительно к однородным системам линейных уравнений часто приходится искать ответ на вопрос о существовании ненулевых решений. Ответ на этот вопрос можно сформулировать в виде следующей теоремы.

Теорема . Однородная система линейных уравнений имеет ненулевое решение тогда и только тогда, когда ее ранг меньше числа неизвестных .

Доказательство : Допустим, система, ранг которой равен, имеет ненулевое решение. Очевидно, что не превосходит . В случае система имеет единственное решение. Поскольку система однородных линейных уравнений всегда имеет нулевое решение, то именно нулевое решение и будет этим единственным решением. Таким образом, ненулевые решения возможны только при .

Следствие 1 : Однородная система уравнений, в которой число уравнений меньше числа неизвестных, всегда имеет ненулевое решение.

Доказательство : Если у системы уравнений , то ранг системы не превышает числа уравнений , т.е. . Таким образом, выполняется условие и, значит, система имеет ненулевое решение.

Следствие 2 : Однородная система уравнений с неизвестными имеет ненулевое решение тогда и только тогда, когда ее определитель равен нулю.

Доказательство : Допустим, система линейных однородных уравнений, матрица которой с определителем , имеет ненулевое решение. Тогда по доказанной теореме , а это значит, что матрица вырожденная, т.е. .

Теорема Кронекера-Капелли: СЛУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы. Система ур-ий называется совместной, если она имеет хотя бы одно решение.

Однородная система линейных алгебраических уравнений .

Система m линейных ур-ий с n переменными называется системой линейных однородных уравнений, если все свободные члены равны 0. Система линейных однородных ур-ий всегда совместна, т.к. она всегда имеет, по крайней мере, нулевое решение. Система линейных однородных ур-ий имеет ненулевое решение тогда и только тогда, когда ранг её матрицы коэффициентов при переменных меньше числа переменных, т.е. при rang A (n. Всякая лин. комбинация

решений системы лин. однородн. ур-ий также является решением этой системы.

Система лин.независимых решений е1, е2,…,еk называется фундаментальной, если каждое решение системы является линейной комбинацией решений. Теорема: если ранг r матрицы коэффициентов при переменных системы линейных однородных уравнений меньше числа переменных n, то всякая фундаментальная система решений системы состоит из n-r решений. Поэтому общее решение системы лин. однордн. ур-ий имеет вид: с1е1+с2е2+…+сkеk, где е1, е2,…, еk – любая фундаментальная система решений, с1, с2,…,сk – произвольные числа и k=n-r. Общее решение системы m линейных ур-ий с n переменными равно сумме

общего решения соответствующей ей системы однородн. линейных ур-ий и произвольного частного решения этой системы.

7.Линейные пространства. Подпространства. Базис, размерность. Линейная оболочка. Линейное пространство называется n-мерным , если в нем существует система из линейно независимых векторов, а любая система из большего количества векторов линейно зависима. Число называется размерностью (числом измерений) линейного пространства и обозначается . Другими словами, размерность пространства - это максимальное число линейно независимых векторов этого пространства. Если такое число существует, то пространство называется конечномерным. Если же для любого натурального числа п в пространстве найдется система, состоящая из линейно независимых векторов, то такое пространство называют бесконечномерным (записывают: ). Далее, если не оговорено противное, будут рассматриваться конечномерные пространства.

Базисом n-мерного линейного пространства называется упорядоченная совокупность линейно независимых векторов (базисных векторов ).

Теорема 8.1 о разложении вектора по базису. Если - базис n-мерного линейного пространства , то любой вектор может быть представлен в виде линейной комбинации базисных векторов:

V=v1*e1+v2*e2+…+vn+en
и притом единственным образом, т.е. коэффициенты определяются однозначно. Другими словами, любой вектор пространства может быть разложен по базису и притом единственным образом.

Действительно, размерность пространства равна . Система векторов линейно независима (это базис). После присоединения к базису любого вектора , получаем линейно зависимую систему (так как это система состоит из векторов n-мерного пространства). По свойству 7 линейно зависимых и линейно независимых векторов получаем заключение теоремы.