Закон джоуля ленца краткий конспект. Закон Джоуля-Ленца: история возникновения

Передача электричества во время движения тока в другую энергию происходит на молекулярном уровне. Во время подобного процесса температура проводника повышается на определенную величину. описывает данное явление взаимодействия атомов и ионов токопроводника с электронами тока.

Свойства электроэнергии

Во время движения по проводнику из металла наблюдается сталкивание электронов с множеством хаотично расположенных посторонних частиц. Периодически в результате соприкосновения из нейтральной молекулы выделяются новые электроны. Происходит образование из молекулы положительного иона, а в электроне пропадает кинетическая энергия. Иногда встречается и второй вариант – образование молекулы нейтрального вида благодаря соединению положительного иона и электрона.

Все эти процессы сопровождаются расходованием определенного количества энергии, превращающейся далее в тепло. Преодоление сопротивления в ходе всех этих движений определяет затраты энергии и превращение работы, необходимой для этого, в тепло.

Параметры R идентичны показателям стандартного сопротивления. В той или иной степени в тепло преобразуется какой-то объем энергии при прохождении тока через любой проводник. Именно такое превращение рассматривается законом Джоуля-Ленца.

Формула и ее составляющие

Переход во внутреннюю энергию проводника результатов работы тока подтвержден многочисленными опытами. После накопления критического объема выполняется отдача избытка энергии окружающим телам с нагреванием проводника.

Классическая формула расчетов для данного явления:

Берем Q для обозначения количества выделяемой теплоты и подставляем его вместо А. Теперь в получившемся выражении Q= U*I*t заменяем U=IR и выводим классическую формулу Джоуля-Ленца:

В схемах с последовательным соединением для расчетов использование этой основной формулы будет самым удобным методом. В этом случае во всех проводниках сила тока всегда остается одинаковой. Выделенный объем тепла пропорционален сопротивлению каждого из имеющихся проводников.

А вот при параллельном подключении одинаковым будет напряжение на концах, а номинальное значение электротока в каждом элементе существенно отличается. Можно утверждать, что имеется обратная пропорциональность между количеством теплоты и проводимостью отдельно взятого проводника. Здесь более уместной становится формула:

Q = (U2/R)t

Практические примеры явления теплового действия тока

Многие исследователи и ученые занимались изучением особенностей протекания электричества. Но наиболее впечатляющие результаты получили российский ученый Эмилий Христианович Ленц и англичанин Джеймс Джоуль. Независимо друг от друга был сформулирован закон, с помощью которого производилась оценка получаемого в процессе действия электричества на проводник тепла. Итоговое выражение получило название в честь его авторов.

На нескольких примерах можно уяснить природу и характеристики теплового воздействия тока.

Обогревательные приборы

Функцию нагревания в конструкции подобных устройств выполняет металлическая спираль. При необходимости нагрева воды важно соблюсти баланс между параметрами сетевой энергии и тепловым обменом. Установка спирали выполняется изолировано.

Различными способами решаются задачи по минимизации потерь энергии. Один из вариантов – повышение напряжение, но он чреват снижением уровня эксплуатационной безопасности линий.

Применяется и методика подбора проводов, потери тепла в которых зависят от свойств различных металлов и сплавов. Изготовление спиралей выполняется из предназначенных для работы с высокими нагрузками материалов.

Лампа накаливания

Открытие закона Джоуля-Ленца способствовало быстрому прогрессу электротехники. Особенно показательным остается пример его использования для осветительных элементов.

Внутри подобной лампочки протягивается нить из вольфрама. Весь процесс основан на высоком удельном сопротивлении и тугоплавкости этого металла.

Трансформация энергии в тепловую вызывает эффект нагревания и свечения спирали. Минусом всегда остается расходование основного объема энергии на нагревание, а само свечение выполняется за счет ее небольшой части.

Для более точного понимания данного процесса вводится такое понятие, как коэффициент полезного действия, с помощью которого определяется эффективность рабочего процесса.

Электрическая дуга

В этом случае мы говорим о мощном источнике света и способе сваривания конструкций из металла.

Принцип протекания подобного процесса – подключение к паре угольных стержней источника тока большой мощности и минимального напряжения с последующим контактом этих элементов.

Бытовые предохранители

При использовании электроцепей применяются специальные устройства. Главным элементом в таких предохранителях будет легкоплавкая проволока. Она вкручена в фарфоровом корпусе, который вставляется в патрон.

Являясь частью общей цепи, такой проводник при резком возрастании выделения тепла плавится и размыкает сеть.

Физика 8 класс: закон Джоуля-Ленца

Подробное изучение прохождения электричества по проводнику и происходящего при этом нагревания изложено в школьной программе. На практических примерах показаны все нюансы, влияющие на величину теплового действия тока.

План проведения учебного занятия обычно строится по следующей схеме:

  1. Необходимые, для демонстрации зависимости объема тепла от сопротивления и силы тока, опыты.
  2. Детальное изучение закона Джоуля-Ленца, его основной формулы и значения всех ее составляющих.
  3. Исторические факты, исключающие вероятность плагиата со стороны обоих авторов.
  4. Подведение общих итогов урока.
  5. Практическое применение для выполнения расчетов.
  6. Решение задач на основе полученной информации.

Закрепление материала происходит во время выполнения домашних заданий по оценке количества тепла, выделяемого в ходе протекания тока по проводнику с обозначенными параметрами.

Математически может быть выражен в следующей форме:

где w - мощность выделения тепла в единице объёма, - плотность электрического тока, - напряжённость электрического поля , σ - проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах :

В математической форме этот закон имеет вид

где dQ - количество теплоты, выделяемое за промежуток времени dt , I - сила тока, R - сопротивление, Q - полное количество теплоты, выделенное за промежуток времени от t 1 до t 2 . В случае постоянных силы тока и сопротивления:

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии , понижая в результате силу тока. Однако, повышение напряжения снижает электробезопасность линий электропередачи .

Для применения высокого напряжения в цепи для сохранения прежней мощности на полезной нагрузке приходится увеличивать сопротивление нагрузки. Подводящие провода и нагрузка соединены последовательно . Сопротивление проводов () можно считать постоянным. А вот сопротивление нагрузки () растёт при выборе более высокого напряжения в сети. Также растёт соотношение сопротивления нагрузки и сопротивления проводов. При последовательном включении сопротивлений (провод - нагрузка - провод) распределение выделяемой мощности () пропорционально сопротивлению подключённых сопротивлений.

Ток в сети для всех сопротивлений постоянен. Следовательно, выполняются соотношение

И для в каждом конкретном случае являются константами. Следовательно, мощность, выделяемая на проводах, обратно пропорциональна сопротивлению нагрузки, то есть уменьшается с ростом напряжения, так как . Откуда следует, что . В каждом конкретном случае величина является константой, следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы . В них используется нагревательный элемент - проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром , константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

См. также

Примечания

Ссылки

  • Эффективная физика. Джоуля-Ленца закон копия из веб-архива
  • http://elib.ispu.ru/library/physics/tom2/2_3.html Закон Джоуля-Ленца
  • http://eltok.edunet.uz/dglens.htm Законы постоянного тока. Закон Джоуля-Ленца
  • http://slovari.yandex.ru/dict/bse/article/00023/23600.htm БСЭ. Джоуля-Ленца закон
  • http://e-science.ru/physics/theory/?t=27 Закон Джоуля-Ленца

Wikimedia Foundation . 2010 .

Смотреть что такое "Закон Джоуля - Ленца" в других словарях:

    - (по имени английского физика Джеймса Джоуля и русского физика Эмилия Ленца, одновременно, но независимо друг от друга открывших его в 1840г) закон, дающий количественную оценку теплового действия электрического тока. При протекании тока по… … Википедия

    ЗАКОН ДЖОУЛЯ-ЛЕНЦА - закон, определяющий тепловое действие электрического тока; согласно этому закону количество теплоты Q, выделяющееся в проводнике при прохождении по нему постоянного электрического тока, равно произведению квадрата силы тока I, сопротивления… … Большая политехническая энциклопедия

    закон Джоуля-Ленца - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Joule Lenz s lawJoule s law … Справочник технического переводчика

    закон Джоуля-Ленца

    закон Джоуля-Ленца - Joule o dėsnis statusas T sritis automatika atitikmenys: angl. Joule s law vok. Joulesches Gesetz, n rus. закон Джоуля Ленца, m pranc. loi de Joule, f ryšiai: sinonimas – Džaulio dėsnis … Automatikos terminų žodynas

    закон Джоуля - Džaulio dėsnis statusas T sritis fizika atitikmenys: angl. Joule law vok. Joule Lentzsches Gesetz, n; Joulesches Gesetz, n rus. закон Джоуля, m; закон Джоуля Ленца, m pranc. loi de Joule, f … Fizikos terminų žodynas

    Закон Джоуля–Ленца - количество теплоты Q, выделяющейся в единицу времени на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I, равно Q = RI2. Закон установлен в 1841 Дж. П. Джоулем (1818 1889) и подтверждён в 1842 точными… … Концепции современного естествознания. Словарь основных терминов

    Определяет кол во теплоты Q, выделяющееся в проводнике с сопротивлением Л за время t при прохождении через него тока I: Q=aI2Rt. Коэфф. пропорциональности а зависит от выбора ед. измерений: если I измеряется в амперах, R в омах, t в секундах, то… … Физическая энциклопедия

В 1841 и 1842 года независимо друг от друга английский и русский физики установили зависимость количества тепла от протекания тока в проводнике. Эту зависимость назвали «Закон Джоуля-Ленца». Англичанин установил зависимость на год раньше, чем русский, но название закон получил от фамилий обоих ученных, потому как их исследования были независимы. Закон не носит теоретический характер, но имеет большое практическое значение. И так давайте кратко и понятно узнаем определение закона Джоуля-Ленца и где он применяется.

Формулировка

В реальном проводнике при протекании через него тока выполняется работа против сил трения. Электроны движутся через провод и сталкиваются с другими электронами, атомами и прочими частицами. В результате этого выделяется тепло. Закон Джоуля-Ленца описывает количество тепла, выделяемое при протекании тока через проводник. Оно прямо пропорционально зависит от силы тока, сопротивления и времени протекания.

В интегральной форме Закон Джоуля-Ленца выглядит так:

Сила тока обозначается буквой I и выражается в Амперах, Сопротивление - R в Омах, а время t - в секундах. Единица измерения теплоты Q — Джоуль, чтобы перевести в калории нужно умножить результат на 0,24. При этом 1 калория равна количеству теплоты, которое нужно подвести к чистой воде, чтобы увеличить её температуру на 1 градус.

Такая запись формулы справедлива для участка цепи при последовательном соединении проводников, когда в них протекает одна величина тока, но падает на концах различное напряжение. Произведение силы тока в квадрате на сопротивление равняется мощности. В то же время мощность прямо пропорциональна квадрату напряжения и обратно пропорциональна сопротивлению. Тогда для электрической цепи при параллельном соединении можно Закон Джоуля-Ленца можно записать в виде:

В дифференциальной форме он выглядит следующим образом:

Где j - плотность тока А/см 2 , E - напряженность электрического поля, сигма - удельное сопротивление проводника.

Стоит отметить что для однородного участка цепи сопротивление элементов будет одинаковым. Если в цепи присутствуют проводники с разным сопротивлением возникает ситуация, когда максимальное количество тепла выделяется на том, который имеет самое большое сопротивление, о чем можно сделать вывод, проанализировав формулу Закона Джоуля-Ленца.

Частые вопросы

Как найти время? Здесь имеется в виду период протекания тока через проводник, то есть когда цепь замкнута.

Как найти сопротивление проводника? Для определения сопротивления используют формулу, которую часто называют “рельс”, то есть:

Здесь буквой «Ро» обозначается удельное сопротивление, оно измеряется в Ом*м/см2, l и S это длина и площадь поперечного сечения. При вычислениях метры и сантиметры квадратные сокращаются и остаются Омы.

Удельное сопротивление - это табличная величина и для каждого металла она своя. У меди на порядки меньше, чем у высокоомных сплавов типа вольфрама или нихрома. Для чего это применяется мы рассмотрим ниже.

Перейдем к практике

Закон Джоуля-Ленца имеет большое значение для электротехнических расчетов. В первую очередь вы можете его применить при расчете нагревательных приборов. В качестве нагревательного элемента чаще всего применяется проводник, но не простой (типа меди), а с высоким сопротивлением. Чаще всего это нихром или кантал, фехраль.

Они имеют большое удельное сопротивление. Вы можете использовать и медь, но тогда вы потратите очень много кабеля (сарказм, медь не используют в этих целях). Чтобы рассчитать мощность тепла для нагревательного прибора вам нужно определится, какое тело и в каких объемах вам нужно нагреть, учесть количество требуемой теплоты и за какое время её нужно передать телу. После расчетов и преобразований вы получите сопротивление и силу тока в этой цепи. На основании полученных данных по удельному сопротивлению подбираете материал проводника, его сечение и длину.

Закон Джоуля-Ленца при передаче электричества на расстояние

При возникает существенная проблема - потери на линиях передачи (ЛЭП). Закон Джоуля-Ленца описывает количество тепла, выделенного проводником при протекании тока. ЛЭП питают целые предприятия и города, а для этого нужна большая мощность, как следствие большой ток. Так как количество теплоты зависит от сопротивления проводника и тока, чтобы кабеля не грелись нужно уменьшить количество тепла. Увеличить сечение проводов не всегда можно, т.к. это затратно в плане стоимости самой меди и веса кабеля, что влечет за собой удорожание несущей конструкции. Высоковольтные линии электропередач изображены ниже. Это массивные металлоконструкции, созданные чтобы поднять кабеля на безопасную высоту над землей, с целью избежания поражения электрическим током.

Поэтому нужно снизить ток, чтобы это сделать повышают напряжение. Между городами линии электропередач обычно имеют напряжение 220 или 110 кВ, а у потребителя понижается до нужной величины с помощью трансформаторных подстанций (КТП) или целым рядом КТП постепенно понижая до более безопасных для передачи величин, например 6 кВ.

Таким образом при той же потребляемой мощности при напряжении в 380/220 В ток снизится в сотни и тысячи раз ниже. А по закону Джоуля-Ленца количество тепла в этом случае определяется мощностью, которая теряется на кабеле.

Плавкие вставки и предохранители

Закон Джоуля-Ленца применяется при расчете плавких предохранителей. Это такие элементы, которые защищают электрическое или электронное устройство от чрезмерных для него токов, которые могут возникнуть в следствии скачка питающего напряжения,

Закон Джоуля - Ленца

Закон Джоуля - Ленца (по имени английского физика Джеймса Джоуля и русского физика Эмилия Ленца, одновременно, но независимо друг от друга открывших его в 1840г) - закон, дающий количественную оценку теплового действия электрического тока.

При протекании тока по проводнику происходит превращение электрической энергии в тепловую, причём количество выделенного тепла будет равно работе электрических сил:

Q = W

Закон Джоуля - Ленца: количество тепла, выделяемого в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени его прохождения.

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии, понижая в результате силу тока. Повышение напряжения снижает электробезопасность линий электропередачи. В случае применения высокого напряжения в цепи для сохранения прежней мощности потребителя придется увеличить сопротивление потребителя (квадратичная зависимость. 10В, 1 Ом = 20В, 4 Ом). Подводящие провода и потребитель соединены последовательно. Сопротивление проводов (R w ) постоянное. А вот сопротивление потребителя (R c ) растет при выборе более высокого напряжения в сети. Также растет соотношение сопротивления потребителя и сопротивления проводов. При последовательном включении сопротивлений (провод - потребитель - провод) распределение выделяемой мощности (Q ) пропорционально сопротивлению подключенных сопротивлений. ; ; ; ток в сети для всех сопротивлений постоянен. Следовательно имеем соотношение Q c / Q w = R c / R w ; Q c и R w это константы (для каждой конкретной задачи). Определим, что . Следовательно, мощность выделяемая на проводах обратно пропорциональна сопротивлению потребителя, то есть уменьшается с ростом напряжения. так как . (Q c - константа); Объеденим две последние формулы и выведем, что ; для каждой конкретной задачи - это константа. Следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.Ток проходит равномерно.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы . В них используется нагревательный элемент - проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Основная статья : Предохранитель (электричество)

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

Закон Джоуля - Ленца

Эмилий Христианович Ленц (1804 - 1865) – русский знаменитый физик. Он является одним из основоположников электромеханики. С его именем связано открытие закона, определяющего направление индукционного тока, и закона, определяющего электрическое поле в проводнике с током.

Кроме того, Эмилий Ленц и английский учёный-физик Джоуль, изучая на опыте тепловые действия тока, независимо один от другого открыли закон, согласно которому количество теплоты, которое выделяется в проводнике, будет прямо пропорционально квадрату электрического тока, который проходит по проводнику, его сопротивлению и времени, в течение которого электрический ток поддерживается неизменным в проводнике.

Данный закон получил название закон Джоуля – Ленца, формула его выражает следующим образом:

где Q – количество выделившейся теплоты, l – ток, R – сопротивление проводника, t – время; величина k называется тепловым эквивалентом работы. Численное значение этой величины зависит от выбора единиц, в которых производятся измерения остальных величин, входящих в формулу.

Если количество теплоты измерять в калориях, ток в амперах, сопротивление в Омах, а время в секундах, то k численно равно 0,24. Это значит, что ток в 1а выделяет в проводнике, который обладает сопротивлением в 1 Ом, за одну секунду число теплоты, которое равно 0,24 ккал. Исходя из этого, количество теплоты в калориях, выделяющееся в проводнике, может быть рассчитано по формуле:

В системе единиц СИ энергия, количество теплоты и работа измеряются единицами – джоулями. Поэтому коэффициент пропорциональности в законе Джоуля – Ленца равен единице. В этой системе формула Джоуля – Ленца имеет вид:

Закон Джоуля – Ленца можно проверить на опыте. По проволочной спиральке, погружённой в жидкость, налитую в калориметр, пропускается некоторое время ток. Затем подсчитывается количество теплоты, выделившейся в калориметре. Сопротивление спиральки известно заранее, ток измеряется амперметром и время секундомером. Меняя ток в цепи и используя различные спиральки, можно проверить закон Джоуля – Ленца.

На основании закона Ома

Подставляя значение тока в формулу (2), получим новое выражение формулы для закона Джоуля – Ленца:

Формулой Q = l²Rt удобно пользоваться при расчёте количества теплоты, выделяемого при последовательном соединении, потому что в этом случае электрический ток во всех проводниках одинаков. Поэтому, когда происходит последовательное соединение нескольких проводников, в каждом из них будет выделено такое количество теплоты, которое пропорционально сопротивлению проводника. Если соединить, например, последовательно три проволочки одинаковых размеров – медную, железную и никелиновую, то наибольшее количество теплоты будет выделяться из никелиновой, так как удельное сопротивление её наибольшее, она сильнее и нагревается.

Если проводники соединить параллельно, то электрический ток в них будет различен, а напряжение на концах таких проводников одно и то же. Расчёт количества теплоты, которое будет выделяться при таком соединении, лучше вести, используя формулу Q = (U²/R)t.

Эта формула показывает, что при параллельном соединении каждый проводник выделит такое количество теплоты, которое будет обратно пропорционально его проводимости.

Если соединить три одинаковой толщины проволоки – медную, железную и никелиновую – параллельно между собой и пропустить через них ток, то наибольшее количество теплоты выделится в медной проволоке, она и нагреется сильнее остальных.

Беря за основу закон Джоуля – Ленца, производят расчёт различных электроосветительных установок, отопительных и нагревательных электроприборов. Также широко используется преобразование энергии электричества в тепловую.

Закон Джоуля - Ленца

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время dt через сечение проводника переносится заряд dq = Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока

(99.1)

Если сопротивление проводника R, то, используя закон Ома (98.1), получим

(99.2)

Из (99.1) и (99.2) следует, что мощность тока

(99.3)

Если сила тока выражается в амперах, напряжение - в вольтах, сопротивление - в омах, то работа тока выражается в джоулях, а мощность - в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт-ч) и киловатт-час (кВт-ч). 1 Вт×ч - работа тока мощностью 1 Вт в течение 1 ч; 1 Вт-ч = 3600 Вт-с = 3,6-103 Дж; 1 кВт-ч=103 Вт-ч=3,6-106 Дж.

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

(99.6)

Используя дифференциальную форму закона Ома (j = gE)и соотношение r = 1/g, получим

(99.7)

Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля - Ленца в дифференциальной форме, пригодным для любого проводника.

Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847-1923) лампы накаливания. На нагревании проводников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761-1834)), контактной электросварки, бытовых электронагревательных приборов и т. д.

Формула закона джоуля ленца. краткоо

Нина холод

Закон Джоуля Ленца определяет выделенное количество тепла на участке электрической цепи обладающей конечным сопротивлением при прохождении тока через нее. Обязательным условием является тот факт, что на этом участке цепи должны отсутствовать химические превращения. Возьмём проводник, к концам которого приложено напряжение. Следовательно, через него протекает ток. Таким образом, электростатическое поле и внешние силы совершают работу по перемещению электрического заряда от одного конца проводника к другому.
Если при этом проводник остается неподвижный и внутри него не происходят химические превращения. То вся работа, затрачиваемая внешними силами электростатического поля, идет на увеличение внутренней энергии проводника. То есть на его разогрев.

В результате опытов было установлено, что количество тепла выделяемого током при прохождении по проводнику, зависит от сопротивления самого проводника, тока и времени его прохождения.

Этот физический закон был впервые установлен в 1841 году английским физиком Джоулем, а несколько позднее (в 1844 году) независимо от него русским академиком Эмилем Христиановичем Ленцем (1804 - 1865).

Количественные соотношения, имеющие место при нагревании проводника током, называются законом Джоуля-Ленца.

Выше было установлено:

Так как 1 кал = 0,472 кГм, то

Таким образом,

1 Дж = 0,24 кал.

Энергия электрического тока определяется по формуле

A = I 2 × r × t Дж.

Так как энергия тока идет на нагрев, то количество тепла, выделяемое током в проводнике, равно:

Q = 0,24 × I 2 × r × t кал.

Эта формула, выражающая закон Джоуля-Ленца, показывает и дает определение закону, что количество тепла в калориях, выделяемое током при прохождении по проводнику, равно коэффициенту 0,24, умноженному на квадрат тока в амперах, сопротивление в омах и время в секундах.

Видео - "Закон Джоуля-Ленца, физика 8 класс":

Пример 1. Определить, сколько тепла выделит ток в 6 А, проходя по проводнику сопротивлением 2 Ом, в течение 3 минут.

Q = 0,24 × I 2 × r × t = 0,24 × 36 × 2 × 180 = 3110,4 кал.

Формулу закона Джоуля-Ленца можно написать так:

Q = 0,24 × I × I × r × t ,

а так как I × r = U , то можно написать:

Q = 0,24 × I × U × t кал.


Пример 2. Электрическая плитка включена в сеть напряжением 120 В. Ток, протекающий по спирали плитки, 5 А. Требуется определить, сколько тепла выделит ток за 2 часа.

Q = 0,24 × I × U × t = 0,24 × 5 × 120 × 7200 = 1 036 800 кал = 1036,8 ккал.

Видео - "Нагревание проводников электрическим током":

Э. Х. Ленц обобщил опыты электромагнитной индукции, изложив это обобщение в виде "правила Ленца". В своих трудах по теории электрических машин Ленц изучил явление "реакции якоря" в машинах постоянного тока, доказал принцип обратимости электрических машин. Ленц, работая с Якоби, исследовал силу притяжения электромагнитов, установил зависимость магнитного момента от намагничивающей силы.


12 (24) февраля 1804 - 29 января (10 февраля) 1865 (60 лет)

Ленц был членом Петербургской Академии Наук и ректором Петербургского университета.