Непрерывные проценты. Постоянная сила роста

Для непрерывных процентов не существует различий между процентной и учетной ставками, поскольку сила роста – универсальный показатель. Однако наряду с постоянной силой роста может использоваться переменная процентная ставка, величина которой меняется по заданному закону (математической функции).

Непрерывное начисление процентов используется при анализе сложных финансовых задач, например, обоснование и выбор инвестиционных решений. Оценивая работу финансового учреждения, где платежи за период поступают многократно, целесообразно предполагать, что наращенная сумма непрерывно меняется во времени и применять непрерывное начисление процентов.

Все ситуации, которые мы до сих пор рассматривали, относились к дискретным процентам, поскольку их начисление осуществляется за фиксированные промежутки времени (год, квартал, месяц, день, час). Но на практике нередко встречаются случаи, когда проценты начисляются непрерывно , за сколь угодно малый промежуток времени. Если бы проценты начислялись ежедневно, то годовой коэффициент (множитель) наращения выглядел так:

k н = (1 + j / m ) m = (1 + j / 365) 365

Но поскольку проценты начисляются непрерывно, то m стремится к бесконечности, а коэффициент (множитель) наращения стремится к e j :

где e ≈ 2,718281, называется числом Эйлера и является одной из важнейших постоянных математического анализа.

Отсюда можно записать формулу наращенной суммы для n лет:

FV = PV e j n = P e δ n

Ставку непрерывных процентов называют силой роста (force of interest) и обозначают символом δ , в отличие от ставки дискретных процентов (j ).

Пример. Кредит в размере на 100 тыс. долларов получен сроком на 3 года под 8% годовых. Определить сумму подлежащего возврату в конце срока кредита, если проценты будут начисляться:

а) один раз в год;

б) ежедневно;

в) непрерывно.

Решение:

Используем формулы дискретных и непрерывных процентов:

начисление один раз в год

FV = 100"000 (1 + 0,08) 3 = 125"971,2 долларов;

ежедневное начисление процентов

FV = 100"000 (1 + 0,08 / 365) 365 3 = 127"121,6 долларов

непрерывное начисление процентов

FV = 100"000 e 0,08 3 = 127"124,9 долларов.

12. Расчет срока кредита:

В любой простейшей финансовой операции всегда присутствуют четыре величины: современная величина (PV ), наращенная или будущая величина (FV ), процентная ставка (i ) и время (n ).

Иногда при разработке условий финансовой сделки или ее анализе возникает необходимость решения задач, связанных с определением отсутствующих параметров, таких как срок финансовой операции или уровень процентной ставки.

Как правило, в финансовых контрактах обязательно фиксируются сроки, даты, периоды начисления процентов, поскольку фактор времени в финансово-коммерческих расчетах играет важную роль. Однако бывают ситуации, когда срок финансовой операции прямо в условиях финансовой сделки не оговорен, или когда данный параметр определяется при разработке условий финансовой операции.

Обычно срок финансовой операции определяют в тех случаях, когда известна процентная ставка и величина процентов.

Если срок определяется в годах, то

n = (FV - PV ) : (PV i ),

а если срок сделки необходимо определить в днях, то появляется временная база в качестве сомножителя:

t = [(FV - PV ) : (PV i )] T .

Так же как для простых процентов, для сложных процентов необходимо иметь формулы, позволяющие определить недостающие параметры финансовой операции:

  • срок ссуды:

n = / = / ;

  • ставка сложных процентов:

Таким образом, увеличение вклада за три года в три раза эквивалентно годовой процентной ставке в 44,3%, поэтому размещение денег под 46% годовых будет более выгодно.

13. Расчет срока кредита:

14. Расчет процентной ставки:

- при наращении по сложной годовой ставке %,

- при наращении по номинальной ставке % m раз в году,

- при наращении по постоянной силе роста.

15. Расчет процентной ставки:

- при дисконтировании по сложной годовой учетной ставке,

- при дисконтировании по номинальной учетной ставке m раз в году.

В практических финансово-кредитных операциях непрерывное наращение, т.е. наращение за бесконечно малые отрезки времени, применяется крайне редко. Существенно большее значение непрерывное наращение имеет в анализе сложных финансовых проблем, например, при обосновании и выборе инвестиционных решений.

Наращенная сумма при дискретных процентах определяется по формуле

S =P (1+j /m ) mn ,

где j – номинальная ставка процентов, а m – число периодов начисления процентов в году.

Чем больше m , тем меньше промежутки времени между моментами начисления процентов. Увеличение частоты начисления процентов (m ) при фиксированном значении номинальной процентной ставки j приводит к росту множителя наращения, который при непрерывном начислении процентов (m ) достигает своего предельного значения

Известно, что

где е – основание натуральных логарифмов.

Используя этот предел в выражении (2.5), окончательно получаем, что наращенная сумма по ставке j равна

S =Pe jn .

Непрерывную ставку процентов называют силой роста и обозначают символом . Тогда

S =Pe n . (2.6)

Сила роста представляет собой номинальную ставку процентов при m .

Закон наращения при непрерывном начислении процентов (2.6) совпадает по форме с (2.2) с той разницей, что в (2.2) время изменяется дискретно с шагом 1/m , а в (2.6) – непрерывно.

Легко показать, что дискретные и непрерывные ставки наращения находятся в функциональной зависимости. Из равенства множителей наращения можно получить формулу эквивалентного перехода от одних ставок к другим:

(1+i ) n =e n ,

откуда следует:

=ln(1+i ), i =e  -1.

Пример 20 . Сумма, на которую начисляются непрерывные проценты в течение 5 лет, равна 2000 ден. ед., сила роста 10%. Наращенная сумма составит S =2000·e 0,1·5 =2000·1,6487=3297,44 ден. ед.

Непрерывное наращение по ставке 10% равнозначно наращению за тот же срок сложных дискретных процентов по годовой ставке i . Находим:

i =e 0,1 -1=1,10517-1=0,10517.

В итоге получим S =2000·(1+0,10517) 5 =3297,44 ден. ед.

Дисконтирование на основе силы роста осуществляется по формуле

P =Se - n

Пример 21. Определим современную стоимость платежа из примера 17 при условии, что дисконтирование производится по силе роста 15%.

Решение. Полученная за долг сумма (современная величина) равна

P =5000·е -0,15·5 =5000·0,472366=2361,83 ден. ед.

При применении дискретной сложной учетной ставки такого же размера получили величину (см. пример 17) P =2218,53 ден. ед.

2.5. Расчет срока ссуды и размера процентных ставок

В ряде практических задач начальная (P) и конечная (S) суммы заданы контрактом, и требуется определить либо срок платежа, либо процентную ставку, которая в данном случае может служить мерой сравнения с рыночными показателями и характеристикой доходности операции для кредитора. Указанные величины нетрудно найти из исходных формул наращения и дисконтирования (для простых процентов эти задачи рассмотрены в п. 1.8.).

Срок ссуды. Рассмотрим задачу расчета n для различных условий наращения процентов и дисконтирования.

i из исходной формулы наращения (2.1) следует, что

,

где логарифм можно взять по любому основанию, поскольку он имеется и в числителе, и в знаменателе.

j m

.

d f m

;

.

При наращении по постоянной силе роста, исходя из формулы (2.6) получаем:

.

Пример 22. За какой срок в годах сумма, равная 75 тыс. ден. ед., достигнет 200 тыс. ден. ед. при начислении процентов по сложной ставке 12% раз в году и поквартально?

Решение. По формулам для вычисления срока при наращении по сложным ставкам наращения получим:

n =(log(200/75)/log(1+0,12))=3,578 года;

n =(log(200/75)/(4·log(1+0,12/4))=3,429 года;

Расчет процентных ставок. Из тех же исходных формул, что и выше, получим формулы для расчета ставок при различных условиях наращения процентов и дисконтирования.

При наращении по сложной годовой ставке i из исходной формулы наращения (2.1) следует, что

i =(S /P ) 1/ n –1=
.

При наращении по номинальной ставке процентов m раз в году из формулы (2.2) получаем:

j =m ((S /P ) 1/ mn –1)=
.

При дисконтировании по сложной годовой учетной ставке d и по номинальной учетной ставке f m раз в году из формул (2.3) и (2.4) соответственно получаем:

d =1– (P /S ) 1/ n =
;

f = m (1– (P /S ) 1/ mn =
.

При наращении по постоянной силе роста, исходя из формулы (2.6), получаем:

.

Пример 23. Сберегательный сертификат куплен за 100 тыс. ден. ед., его выкупная сумма – 160 тыс. ден. ед., срок 2,5 года. Каков уровень доходности инвестиции в виде годовой ставки сложных процентов?

Решение. Воспользовавшись полученной формулой для годовой ставки i , получим: i =(160/100) 1/2,5 –1=1,2068–1=0,20684, т.е. 20,684%.

Пример 24. Срок до погашения векселя равен 2 годам. Дисконт при его учете составил 30%. Какой сложной годовой учетной ставке соответствует этот дисконт?

Решение. По данным задачи P /S =0,7. Тогда d =1–
=0,16334, т.е. 16,334%.

При использовании дискретной номинальной ставки наращенная сумма определяется по формуле:

При переходе к непрерывным процентам получим:

Множитель наращения при непрерывной капитализации процентов.

Обозначая силу роста через, получим:

т.к. дискретные и непрерывные ставки функционально связаны друг с другом, то можно записать равенство множителей наращения

На первоначальный капитал 500 тыс. руб. начислили сложные проценты - 8% годовых в течении 4 лет. Определить наращенную сумму, если начисление процентов производится непрерывно.

Дисконтирование на основе непрерывных процентных ставок

В формуле (4.21) можно определить современную величину

Непрерывная процентная ставка, используемая при дисконтировании называется силой дисконта. Она равна силе роста, т.е. используется для дисконтирования силы дисконта или силы роста приводят к одному и тому же результату.

Определить современную стоимость платежа при условии, что дисконтирование производится по силе роста 12% и по дискретной сложной учетной ставке такого же размера.

Переменная сила роста

С помощью этой характеристики моделируются процессы наращения денежных сумм с изменяющейся процентной ставкой. Если сила роста описывается некоторой непрерывной функцией времени, то справедливы формулы.

Для наращенной суммы:

Современная стоимость:

1) Пусть сила роста изменяется дискретно и принимает значения: в интервалы времени, тогда по истечению срока ссуды наращенная сумма составит:

Если срок наращения равен n, а средняя величина роста: , то

Определить множитель наращения при непрерывном начислении процентов в течение 5 лет. Если сила роста изменяется дискретно и соответствует: 1 год -7%, 2 и 3 - 8%, последние 2 года - 10%.

2) Сила роста непрерывно изменяется во времени и описывается уравнением:

где - начальная сила роста (при)

а - годовой прирост или снижение.

Вычислим степень множителя наращения:

Начальное значение силы роста 8%, процентная ставка непрерывная и линейно изменяется.

Прирост за год -2%, срок наращения - 5 лет. Найти множитель наращения.

3) Сила роста изменяется в геометрической прогрессии, тогда

Дискретная процентная ставка – это ставка, при которой процент начисляется за заранее установленные, или определенные, периоды. Если уменьшить период начисления процентов до бесконечно малой величины (период, за который будут произведены начисления, стремится к нулю, а количество начислений процентов – к бесконечности), то проценты будут начисляться непрерывно. В этом случае процентная ставка называется непрерывной ставкой или силой роста .

В теоретических исследованиях и на практике, когда платежи производятся многократно, удобно использовать непрерывный способ начисления процентов. Переход к пределу может быть осуществлен аналогично тому, как это делалось в пункте 2.2 при выводе формулы (2.12) или следующим способом.

Непрерывная ставка может быть постоянной или изменяющейся. Рассмотрим случай, когда непрерывная процентная ставка в разные моменты времени различна.

Пусть, а(t) – функция, описывающая зависимость непрерывной ставки (силы роста) от времени t. Приращение капитала S(t) в момент t за промежуток времени Δt равно:

S(t + Δt) – S(t) = a(t) Δt S(t)

Тогда, имеем:

При Δt →0 получим, что скорость изменения капитала пропорциональна капиталу. Тогда, сумма платежа (капитал) S(t) удовлетворяет линейному однородному дифференциальному уравнению первого порядка:

, (2.28)

– скорость изменения платежа (скорость изменения капитала);

S(t) - сумма платежа (капитал);

a(t) – непрерывный процент начисления или сила роста.

В другом виде уравнение запишется:

dS = a(t) S dt, (2.29)

т. е. приращение платежа пропорционально самому платежу S и приращению времени dt. Коэффициент пропорциональности а(t) суть сила роста или процент начисления.

Возможна еще одна запись дифференциального уравнения:

, (2.30)

т. е. относительное приращение суммы платежа dS/S пропорционально приращению времени dt. Причем по-прежнему, а(t) определяется процентами начисления и в общем случае может зависеть от времени. Все три уравнения для капитала (2.28), (2.29), (2.30) эквивалентны.



Рассмотрим некоторые простейшие свойства капитала, описываемого дифференциальным уравнением (2.28)-(2.30). Если функция a(t)>0 положительна, то при положительном капитале S>0 производная от капитала dS/dt >0 также положительна и, следовательно, капитал S(t) растет. В этом случае a(t) называется непрерывным процентом начисления или силой роста .

В противном случае если функция a(t)<0 отрицательна, то при положительном капитале S>0 производная от капитала dS/dt<0 отрицательна и, следовательно, капитал S(t) убывает. В этом случае абсолютная величина |a(t)| называется непрерывным дисконтом .

Решение линейного дифференциального уравнения хорошо известно. Действительно, уравнение (2.30) является уравнением с разделяющимися переменными и его можно проинтегрировать:

Вычислив интеграл, получим:

,

где - неопределенный интеграл от a(t) ,

С 1 - произвольная постоянная.

Отсюда, имеем:

Окончательно, общее решение дифференциального уравнения запишется в виде:

, (2.31)

где - новая произвольная постоянная.

Для определения произвольной постоянной С нужно знать капитал хотя бы в один какой-нибудь момент времени. Если известно что в момент времени t=t 0 капитал равен S = S 0 (т. е. S(t 0)=S 0), то произвольная постоянная С легко определяется из (2.31):

,

Подставляя полученный результат в (2.31), имеем:

.

Воспользовавшись классической формулой связи определенного и неопределенного интеграла (формулой Ньютона – Лейбница):

,

получим решение дифференциального уравнения с начальными условиями S(t 0)=S 0 в виде:

Часто отсчет времени можно производить от начального момент, тогда t 0 =0 и решение линейного дифференциального уравнения записывается в виде:

, (2.32)

S(0) – начальная сумма в момент 0;

S(t) – сумма платежа в момент t.

Очевидно, приведенные формулы при a(t)>0 соответствуют расчету кредитования, а при a(t)<0 – расчету дисконтирования.

Если сила роста постоянна на всем рассматриваемом промежутке времени, т. е. a(t)= r, то для конечного платежа в момент t имеем:

. (2.33)

Очевидно, эта формула совпадает с полученной ранее предельным переходом формулы для непрерывных процентов (2.12).

Рассмотрим некоторые примеры использования данных формул.

Пример 28.

Ссуда 200 тыс. руб. дана на 2,5 года под ставку 20 % годовых с ежеквартальным начислением. Найти сумму конечного платежа. Расчет произвести по дискретным и непрерывным процентам.

Решение.

Сумма конечного платежа удовлетворяет дифференциальному уравнению , где r=20 %=0,2 в соответствии с процентом ежегодного начисления и время t измеряется в годах. Решение линейного уравнения известно:

.

Тогда сумма конечного платежа равна:

Тыс. руб.

Расчет для дискретного случая по формулам (2.11) дает:

Тыс. руб.

Видно, что при многократных начислениях небольших процентов результаты расчетов сумм конечного платежа близки.

Рассмотрим теперь пример расчета дисконтирования в непрерывном случае.

Пример 29.

Вексель на 3 млн руб. с годовой учетной ставкой 10 % и дисконтированием 2 раза в год выдан на 2 года. Найти исходную сумму, которая должна быть выдана в долг под этот вексель. Расчет произвести по дискретным и непрерывным процентам.

Решение.

Одолженная под вексель сумма платежа удовлетворяет линейному дифференциальному уравнению, решение которого известно:

.

Расчет одолженной под вексель суммы по дискретным формулам (2.24) дает близкие результаты:

млн руб.

Таким образом, теоретические и практические вычисления по непрерывным формулам дают результаты, близкие к результатам расчета по дискретным формулам, если количество начислений велико, а процент начисления невелик.

Для непрерывных процентов не существует различий между процентной и учетной ставками, поскольку сила роста - универсальный показатель. Однако наряду с постоянной силой роста может использоваться переменная процентная ставка, величина которой меняется по заданному закону (математической функции).

Непрерывное начисление процентов используется при анализе сложных финансовых задач, например, обоснование и выбор инвестиционных решений. Оценивая работу финансового учреждения, где платежи за период поступают многократно, целесообразно предполагать, что наращенная сумма непрерывно меняется во времени и применять непрерывное начисление процентов.

Все ситуации, которые мы до сих пор рассматривали, относились к дискретным процентам, поскольку их начисление осуществляется за фиксированные промежутки времени (год, квартал, месяц, день, час). Но на практике нередко встречаются случаи, когда проценты начисляются непрерывно , за сколь угодно малый промежуток времени. Если бы проценты начислялись ежедневно, то годовой коэффициент (множитель) наращения выглядел так:

k н = (1 + j / m ) m = (1 + j / 365) 365

Но поскольку проценты начисляются непрерывно, то m стремится к бесконечности, а коэффициент (множитель) наращения стремится к e j :

где e ? 2,718281, называется числом Эйлера и является одной из важнейших постоянных математического анализа.

Отсюда можно записать формулу наращенной суммы для n лет:

FV = PV * e j * n = P * e д * n

Ставку непрерывных процентов называют силой роста (force of interest) и обозначают символом д , в отличие от ставки дискретных процентов (j ).

Пример. Кредит в размере на 100 тыс. долларов получен сроком на 3 года под 8% годовых. Определить сумму подлежащего возврату в конце срока кредита, если проценты будут начисляться:

а) один раз в год;

б) ежедневно;

в) непрерывно.

Используем формулы дискретных и непрерывных процентов:

начисление один раз в год

FV = 100"000 * (1 + 0,08) 3 = 125"971,2 долларов;

ежедневное начисление процентов

FV = 100"000 * (1 + 0,08 / 365) 365 * 3 = 127"121,6 долларов

непрерывное начисление процентов

FV = 100"000 * e 0,08 * 3 = 127"124,9 долларов.

14. Срок ссуды. Необходимые для расчета продолжительности ссуды в годах и днях формулы

срок в годах

срок в днях (напомним, что n = t/K ,где K - временная база)

.

Величина процентной ставки. Необходимость в расчете процентной ставки возникает при определении финансовой эффективности операции и при сравнении контрактов по их доходности в случаях, когда процентные ставки в явном виде не указаны. Решив выражения (1.1) и (1.8) относительно i или d ,получим

Срок платежа. Приведем формулы расчета п для различных условий наращения процентов и дисконтирования. При наращении по сложной годовой ставке i и по номинальной ставке j соответственно получим:

. (2.23) (2.24)

При дисконтировании по сложной годовой учетной ставке d и по номинальной учетной ставке f

. (2.25) (2.26)

При наращении по постоянной силе роста δ и по изменяющейся с постоянным темпом силе роста

.

Величина процентной ставки. Приведем формулы для расчета ставок i, j, d, f, δ для различных условий наращения процентов и дисконтирования. Они получены при решении уравнений, определяющих S и Р, относительно искомых ставок.

При наращении по сложной годовой ставке процентов и по номинальной ставке процента т раз в году находим

. (2.29) (2.30)

При дисконтировании по сложной учетной ставке и по номинальной учетной ставке

. (2.31) (2.32)

При наращении по постоянной силе роста

. (2.33)

При наращении по изменяющейся с постоянным темпом силе роста

.

15.Начисление простых процентов в условиях инфляции . Вернемся к проблеме обесценения денег при их наращении. В общем случае теперь можно записать:

Если наращение производится по простой ставке, имеем:

(2.43)

Как видим, увеличение наращенной суммы с учетом сохранения покупательной способности денег имеет место только тогда, когда 1 + ni > J p .

Пример. Допустим, на сумму 1,5 млн. руб. в течение трех месяцев начисляются простые проценты по ставке 50% годовых (K = 360). Наращенная сумма равна 1,6875 млн. руб. Если ежемесячная инфляция характеризуется темпами, приведенными в примере 2.22,б, то с учетом обесценения наращенная с0умма составит всего 1,6875/1,77 = 0,9534 млн. руб.

16.Начисление сложных процентов в условиях инфляции. Обратимся теперь к наращению по сложным процентам. Подставив в формулу (2.42) значения S и J p , находим

(2.44)

Величины, на которые умножается Р в формулах (2.43) и (2.44), представляют собой множители наращения с учетом инфляции. Пример. Найдем реальную ставку сложных процентов для условий: годовая инфляция 120%, брутто-ставка 150%:

= 0,1364, или 13,68% (по упрощенной формуле 30%).

Другой метод компенсации инфляции сводится к индексации первоначальной суммы платежа Р. В этом случае эта сумма периодически корректируется с помощью заранее оговоренного индекса. Такой метод принят в Великобритании. По определению

C = PJ p (1 + i ) n .

17.Расчёт реальной процентоной ставки в условиях инфляции. Перейдем теперь к решению обратной задачи - к измерению реальной ставки процента, т.е. доходности с учетом инфляции - определению i по заданному значению брутто-ставки. Если r - объявленная норма доходности (брутто-ставка), то искомый показатель доходности в виде годовой процентной ставки i можно определить при начислении простых процентов на основе (2.43) как

. (2.48)

Реальная доходность, как видим, здесь зависит от срока наращения процентов. Напомним, что фигурирующий в этой формуле индекс цен охватывает весь период начисления процентов.

Аналогичный по содержанию показатель, но при наращении по сложным процентам найдем на основе формулы (2.44).