Музыкальные инструменты - орган. Орган - музыкальный инструмент двадцати восьми веков Где можно увидеть орган музыкальный инструмент

Большие концертные органы превосходят по габаритам все прочие музыкальные инструменты.

Энциклопедичный YouTube

    1 / 5

    ✪ Орган – король музыкальных инструментов

    ✪ Музыкальные инструменты (орган). Иоганн Себастьян Бах | Музыка 2 класс #25 | Инфоурок

    ✪ Музыка 11. Звуки органа - Академия занимательных наук

    ✪ Самый большой орган Украины

    ✪ "Орган??? Музыкальный инструмент!!!", Баранова Т.А. МБДОУ №44

    Субтитры

Терминология

В самом деле, даже в неодушевленных предметах имеется такого рода способность (δύναμις), например, в [музыкальных] орудиях (ἐν τοῖς ὀργάνοις); про одну лиру говорят, что она способна [звучать], а про другую - что нет, если она неблагозвучна (μὴ εὔφωνος).

Тот род людей, который занимается инструментами, тратит на это весь свой труд, как, например, кифаред , или тот, кто демонстрирует своё ремесло на органе и других музыкальных инструментах (organo ceterisque musicae instrumentis).

Основы музыки, I.34

В русском языке слово «орга́н» по умолчанию обозначает духовой орган , но также используется по отношению к другим разновидностям, в том числе электронным (аналоговым и цифровым), имитирующим звук органа. Органы различают:

Слово «орган» также обычно уточняется ссылкой на органостроителя (например, «Орган Кавайе-Коля ») или торговую марку («Орган Хаммонда »). Некоторые разновидности органа имеют самостоятельные термины: античный гидравлос , портатив , позитив , регаль , фисгармония , шарманка и др.

История

Орган - один из древнейших музыкальных инструментов. Его история насчитывает несколько тысяч лет. Гуго Риман считал, что родоначальником органа является древняя вавилонская волынка (XIX век до н. э.): «Мех надувался через трубку, а с противоположного конца находился корпус с дудками, имеющими, без сомнения, язычки и по несколько отверстий» . Зародыш органа можно видеть также во флейте Пана , китайском шэне и других аналогичных инструментах. Считается, что орган (водяной орган, гидравлос) изобрёл грек Ктесибий , живший в Александрии Египетской в 296-228 гг. до н. э. Изображение похожего инструмента имеется на одной монете или жетоне времён Нерона . Органы больших размеров появились в IV веке , более или менее усовершенствованные органы - в VII и VIII веках . Папе Виталиану традиция приписывает введение органа в католическое богослужение . В VIII веке Византия славилась своими органами. Византийский император Константин V Копроним в 757 году подарил орган франкскому королю Пипину Короткому . Позже византийская императрица Ирина подарила его сыну - Карлу Великому орган, который звучал на коронации Карла. Орган считался в то время церемониальным атрибутом византийской, а затем и западноевропейской императорской власти .

Искусство строить органы развилось и в Италии , откуда в IX веке они выписывались во Францию . Позднее это искусство развилось в Германии . Повсеместное распространение в западной Европе орган получил начиная с XIV века . Средневековые органы, в сравнении с более поздними, были грубой работы; ручная клавиатура, например, состояла из клавиш шириной от 5 до 7 см, расстояние между клавишами достигало полутора см. Ударяли по клавишам не пальцами, как теперь, а кулаками. В XV веке были уменьшены клавиши и увеличено число труб.

Древнейшим образцом средневекового органа с относительно целостной механикой (трубы не сохранились) считается орган из Норрланды (церковный приход на острове Готланд в Швеции). Этот инструмент обычно датируется 1370-1400 гг., хотя у некоторых исследователей столь ранняя датировка вызывает сомнения . В настоящее время норрландский орган хранится в Национальном историческом музее в Стокгольме.

В XIX веке благодаря, прежде всего, деятельности французского органного мастера Аристида Кавайе-Колля , который задался целью конструировать органы именно таким образом, чтобы они своим мощным и богатым звучанием могли соперничать со звучанием целого симфонического оркестра, стали возникать инструменты ранее небывалого масштаба и мощности звучания, которые иногда называют симфоническими органами .

Устройство

Пульт

Пульт органа («шпильтиш» от нем. Spieltisch или органная кафедра ) - пульт со всеми необходимыми для органиста средствами, набор которых в каждом органе индивидуален, но у большинства есть общие: игровые - мануалы и педальная клавиатура (или просто «педаль» ) и тембровые - включатели регистров . Могут присутствовать также динамические - швеллеры , различные ножные рычаги или кнопки для включения копул и переключения комбинаций из банка памяти регистровых комбинаций и устройство для включения органа. За пультом, на скамье, органист сидит во время исполнения.

  • Копула - механизм, с помощью которого включенные регистры одного мануала могут звучать при игре на другом мануале или педали. В органах всегда есть копулы мануалов к педали и копулы к главному мануалу, также почти всегда есть копулы более слабых по звучанию мануалов к более сильным. Копула включается/выключается специальным ножным переключателем с фиксатором или кнопкой.
  • Швеллер - устройство, с помощью которого можно регулировать громкость данного мануала, открывая или закрывая створки жалюзи в ящике, в котором расположены трубы этого мануала.
  • Банк памяти регистровых комбинаций - устройство в виде кнопок, доступное только в органах с электрической регистровой трактурой, позволяющая запоминать регистровые комбинации, упрощая тем самым переключение регистров (смену общего тембра) во время исполнения.
  • Готовые регистровые комбинации - устройство в органах с пневматической регистровой трактурой, позволяющее включать готовый набор регистров (обычно p, mp, mf, f )
  • (от итал. Tutti - все) - кнопка включения всех регистров и копул органа.

Мануалы

Первые нотные памятники с органной педалью датированы серединой XV в. - это табулатура немецкого музыканта Адама из Илеборга (англ.) русск. (Adam Ileborgh, ок. 1448) и Буксхаймская органная книга (ок. 1470). Арнольт Шлик в «Spiegel der Orgelmacher» (1511) уже подробно пишет о педали и прилагает свои пьесы, где она весьма виртуозно применяется. Среди них особенно выделяется уникальная обработка антифона Ascendo ad Patrem meum для 10 голосов, из которых 4 поручено педали. Для исполнения этой пьесы требовалась, вероятно, какая-то специальная обувь, позволявшая нажимать одной ногой одновременно две клавиши, отстоящие на расстояние терции . В Италии ноты с использованием органной педали появляются намного позже - в токкатах Аннибале Падовано (1604) .

Регистры

Каждый ряд труб духового органа одинакового тембра составляет как бы отдельный инструмент и называется регистром . Каждая из выдвигаемых или вдвигаемых регистровых рукояток (или электронных выключателей), расположенных на пульте органа над клавиатурами или по бокам от пюпитра, включает или выключает соответствующий ряд органных труб. Если регистры выключены, при нажатии клавиши орган звучать не будет.

Каждая рукоятка соответствует регистру и имеет своё название с указанием высоты тона самой большой трубы этого регистра - футовость , традиционно обозначенную в футах в переводе на регистр Principal. Например, трубы регистра Gedackt - закрытые, и звучат октавой ниже, поэтому такая труба тона «до» субконтроктавы обозначается как 32", при фактической длине в 16". Язычковые регистры, высота звука которых зависит от массы самого язычка, а не от высоты раструба, также обозначаются в футах, по длине аналогичной по высоте звучания трубы регистра Principal .

Регистры по ряду объединяющих признаков группируются в семейства - принципалы , флейты, гамбы, аликвоты, микстуры и др. К основным относятся все 32-, 16-, 8-, 4-, 2-, 1-футовые регистры, к вспомогательным (или обертоновым) - аликвоты и микстуры. Каждая труба основного регистра воспроизводит только один звук неизменной высоты, силы и тембра. Аликвоты воспроизводят порядковый обертон к основному звуку, микстуры дают аккорд, который состоит из нескольких (обычно от 2 до дюжины, иногда до полусотни) обертонов к данному звуку.

Все регистры по устройству труб делятся на две группы:

  • Лабиальные - регистры с открытыми или закрытыми трубами без язычков. К этой группе принадлежат: флейты (широкомензурные регистры), принципалы и узкомензурные (нем. Streicher - «штрайхеры» или струнные), а также регистры призвуков - аликвоты и микстуры, в которых каждая нота имеет один или несколько (более слабых) обертоновых призвуков.
  • Язычковые - регистры, в трубах которых имеется язычок, при воздействии подаваемого воздуха на который возникает характерный звук, схожий по тембру, в зависимости от названия и особенности конструкции регистра, с некоторыми духовыми оркестровыми музыкальными инструментами: гобой , кларнет , фагот , труба , тромбон и др. Язычковые регистры могут располагаться не только вертикально, но и горизонтально - такие регистры составляют группу, которая от фр. chamade называется «шама́да».

Соединение различных видов регистров:

  • итал. Organo pleno - лабиальные и язычковые регистры вместе с микстурой;
  • фр. Grand jeu - лабиальные и язычковые без микстур;
  • фр. Plein jeu - лабиальные с микстурой.

Название регистра и величину труб композитор может обозначить в нотах над тем местом, где данный регистр должен быть применён. Выбор регистров для исполнения музыкального произведения называется регистровкой , а включенные регистры - регистровой комбинацией .

Так как регистры в разных органах разных стран и эпох не одинаковы, то в органной партии они обычно не обозначаются подробно: выписывают над тем или другим местом органной партии только мануал, обозначение труб с язычками или без них и величину труб, а остальное предоставляется на усмотрение исполнителя. Бо́льшая часть нотного органного репертуара не имеет никаких авторских обозначений, касающихся регистровки произведения, так у композиторов и органистов предыдущих эпох существовали свои традиции и искусство сочетания различных тембров органа передавалась устно из поколения в поколение.

Трубы

Трубы регистров звучат по-разному:

  • 8-футовые трубы звучат в соответствии с нотной записью;
  • 4- и 2-футовые звучат на одну и две октавы выше соответственно;
  • 16- и 32-футовые звучат на одну и две октавы ниже соответственно;
  • 64-футовые лабиальные трубы, встречающиеся в наиболее крупных органах мира, звучат на три октавы ниже записи, следовательно, те, что приводятся в действие клавишами педали и мануала ниже контроктавы, издают уже инфразвук ;
  • закрытые сверху лабиальные трубы звучат октавой ниже открытых.

Для настройки малых открытых лабиальных металлических труб органа используется штимгорн . С помощью этого молоткообразного инструмента завальцовывается или развальцовывается открытый конец трубы. Более крупные открытые трубы настраивают путём вырезания вертикального лоскута металла вблизи или непосредственно из открытого края трубы, который отгибается под тем или иным углом. Открытые деревянные трубы обычно имеют настроечное приспособление из дерева или металла, регулировка которой, позволяет настраивать трубу. Закрытые деревянные или металлические трубы настраиваются при помощи регулировки затычки или колпачка на верхнем конце трубы.

Фасадные трубы органа могут играть и декоративную роль. Если трубы не звучат, то их называют «декоративными» или «слепыми» (англ. dummy pipes ).

Трактура

Органная трактура - это система передаточных устройств, функционально соединяющая элементы управления на пульте органа с воздухозапорными устройствами органа. Игровая трактура передаёт движение клавиш мануалов и педали на клапаны конкретной трубы или группы труб в микстуре. Регистровая трактура обеспечивает включение или выключение целого регистра или группы регистров в ответ на нажатие тумблера или движение регистровой рукоятки.

Посредством регистровой трактуры также действует память органа - комбинации регистров, заранее скомпонованные и заложенные в устройство органа - готовые, фиксированные комбинации. Они могут называться как по сочетанию регистров - Pleno, Plein Jeu, Gran Jeu, Tutti, так и по силе звучания - Piano, Mezzopiano, Mezzoforte, Forte. Помимо готовых комбинаций, есть свободные комбинации, которые позволяют органисту выбирать, запоминать и изменять в памяти органа набор регистров по своему усмотрению. Функция памяти имеется не во всех органах. В органах с механической регистровой трактурой она отсутствует.

Механическая

Механическая трактура - эталонная, аутентичная и наиболее часто встречающаяся на данный момент, позволяющая исполнять наиболее широкий спектр произведений всех эпох; механическая трактура не даёт феномена «запаздывания» звука и позволяет досконально ощущать положение и поведение воздушного клапана, что даёт возможность наилучшего контроля инструмента органистом и достижения высокой техники исполнения . Клавиша мануала или педали при использовании механической трактуры соединена с воздушным клапаном системой лёгких деревянных или полимерных тяг (абстрактов), валиков и рычагов; изредка в больших старых органах применялась канатно-блоковая передача. Так как движение всех перечисленных элементов осуществляется только усилием органиста, существуют ограничения в размере и характере расположения звучащих элементов органа. В органах-гигантах (более 100 регистров) механическая трактура либо не используется, либо дополняется машиной Баркера (пневматическим усилителем, помогающим нажимать на клавиши; таковы французские органы начала XX века, например, Большого зала Московской консерватории и церкви Сен-Сюльпис в Париже). Механическая игровая обычно сочетается с механической регистровой трактурой и виндладой системы шлейфладе.

Пневматическая

Пневматическая трактура - наиболее распространённая в романтических органах - с конца XIX века до 20-х годов XX века; нажатие клавиши открывает клапан в управляющем воздуховоде, подача воздуха в который открывает пневматический клапан конкретной трубы (при использовании виндлад шлейфладе, встречается исключительно редко) либо целого ряда труб одного тона (виндлады кегельладе, характерные для пневматической трактуры). Позволяет строить огромные по набору регистров инструменты, так как не имеет силовых ограничений механической трактуры, однако имеет феномен «запаздывания» звука. Это делает зачастую невозможным исполнение технически сложных произведений, особенно во «влажной» церковной акустике, учитывая то, что время задержки звучания регистра зависит не только от удалённости от пульта органа, но и от его размера труб, наличия в трактуре реле, ускоряющих срабатывание механики за счёт освежения импульса, конструктивных особенностей трубы и используемого типа виндлады (практически всегда это - кегельладе, иногда - мембраненладе: работает на выброс воздуха, исключительно быстрое срабатывание). Кроме того, пневматическая трактура разобщает клавиатуру с воздушными клапанами, лишая органиста ощущения «обратной связи» и ухудшая контроль над инструментом. Пневматическая трактура органа хороша для исполнения сольных произведений периода романтизма , сложна для игры в ансамбле , и далеко не всегда подходит для музыки барокко и современности.

Электрическая

Электрическая трактура - широко используемая в XX веке трактура, с прямой передачей сигнала от клавиши к электромеханическому реле открытия-закрытия клапана посредством импульса постоянного тока в электрической цепи. В настоящее время всё чаще вытесняется механической. Это единственная трактура, не ставящая никаких ограничений по количеству и расположению регистров, а также размещению пульта органа на сцене в зале. Позволяет располагать группы регистров в разных концах зала, управлять органом с неограниченного количества дополнительных пультов, исполнять музыку для двух и трех органов на одном органе, а также ставить пульт в удобное место в оркестре , с которого будет хорошо видно дирижёра . Позволяет соединять несколько органов в общую систему, а также даёт уникальную возможность записи исполнения с последующим воспроизведением без участия органиста. Недостаток электрической трактуры, как и пневматической, - разрыв «обратной связи» пальцев органиста и воздушных клапанов. Кроме того, электрическая трактура может давать задержку звука за счёт времени срабатывания электрических реле клапанов, а также коммутатора-распределителя (в современных органах это устройство электронное и задержки не даёт; в инструментах первой половины и середины 20 века оно нередко было электромеханическим). Электромеханические реле при срабатывании часто дают дополнительные «металлические» звуки - щелчки и стук, которые, в отличие от аналогичных «деревянных» призвуков механической трактуры, совсем не украшают звучание произведения. В некоторых случаях электрический клапан получают самые большие трубы в остальном полностью механического органа (например, в новом инструменте фирмы «Hermann Eule» в Белгороде), что обусловлено необходимостью при большом расходе воздуха трубой сохранять площадь механического вентиля, и как следствие игровые усилия, в басу в приемлемых рамках. Шум может издавать и регистровая электрическая трактура при смене регистровых комбинаций. Пример акустически превосходного органа с механической игровой трактурой и при этом достаточно шумной регистровой трактурой - швейцарский орган фирмы «Kuhn» в Католическом соборе в Москве .

Другие

Крупнейшие органы мира

Крупнейший орган Европы - Большой орган кафедрального собора Св. Стефана в Пассау (Германия), построенный немецкой фирмой «Stenmayer & Co». Имеет 5 мануалов, 229 регистров, 17 774 трубы. Считается четвёртым по величине действующим органом в мире .

До недавнего времени крупнейшим в мире органом с полностью механической игровой трактурой (без применения электронного и пневматического управления) был орган собора св. Троицы в Лиепае (4 мануала, 131 регистр, более 7 тысяч труб), однако, в 1979 году в большом концертном зале центра исполнительских искусств Сиднейского оперного театра был установлен орган, имеющий 5 мануалов, 125 регистров и около 10 тысяч труб. Ныне он считается крупнейшим (с механической трактурой).

Главный орган Кафедрального собора в Калининграде (4 мануала, 90 регистров, около 6,5 тысяч труб ) является самым большим органом в России.

Экспериментальные органы

Органы оригинальной конструкции и настройки разрабатывались начиная со второй половины XVI века , как, например, архиорган итальянского теоретика музыки и композитора Н. Вичентино . Однако широкого распространения такие органы не получили. Ныне они выставляются как исторические артефакты в музеях музыкальных инструментов наряду с другими экспериментальными инструментами прошлого.

В филиппинском городе Лас-Пиньясе (в церкви Св. Иосифа) в 1822 году установлен уникальный орган, в конструкции которого используются 832 бамбуковые трубы.

В XX веке нидерландским физиком

Орган – самый большой музыкальный инструмент, уникальное человеческое творение. В мире нет двух одинаковых органов.

Гигантский орган обладает множеством различных тембров. Это достигается за счет использования сотен металлических труб разного размера, через которые продувают воздух, и трубы начинают гудеть, или «петь». Причем орган позволяет тянуть звук сколь угодно долго с постоянной громкостью.

Трубы расположены горизонтально и вертикально, некоторые подвешены на крюках. В современных органах их число доходит до 30 тысяч! Самые большие трубы имеют высоту свыше 10 м, а самые маленькие – 1 см.

Система управления органом называется кафедрой. Это сложный механизм, которым управляет органист. У органа несколько (от 2 до 7) ручных клавиатур (мануалов), состоящих из клавиш, как на фортепиано. Раньше на органе играли не пальцами, а ударяли кулаками. Есть еще ножная клавиатура или просто педаль, имеющая до 32 клавиш.

Обычно исполнителю помогают один или два ассистента. Они переключают регистры, сочетание которых порождает новый тембр, не похожий на исходный. Орган может заменить целый оркестр, потому что его диапазон превышает диапазон всех инструментов оркестра.

Орган известен с глубокой древности. Создателем органа считается греческий механик Ктесибий, живший в Александрии в 296–228 гг. до н. э. Он изобрел водяной орган – гидравлос.

Сейчас чаще всего орган используется на богослужениях. В некоторых церквях и соборах устраивают концерты или органные богослужения. Помимо этого, есть органы, установленные в концертных залах. Самый большой орган в мире находится в американском городе Филадельфия, в универмаге «Маккейз». Его вес составляет 287 т.

Музыку для органа писали многие композиторы, но раскрыл его возможности как виртуоз-исполнитель и создал непревзойденные по глубине произведения как гений-композитор Иоганн Себастьян Бах.

В России органному искусству значительное внимание уделял Михаил Иванович Глинка.

Самостоятельно освоить игру на органе практически невозможно. Это требует большого музыкантского опыта. Обучение на органе начинается в училищах, при наличии навыков игры на фортепиано. Но хорошо овладеть игрой на этом инструменте возможно, продолжив обучение в консерватории.

ЗАГАДКА

Инструмент тот с давних пор

Украшал собой собор.

Украшает и играет,

Весь оркестр заменяет

«Король инструментов». Самый большой, самый тяжелый, с самым широким регистром издаваемого звучания, орган всегда был чем-то вроде легенды во плоти.

Конечно, непосредственно к пианино орган никакого отношения не имеет. Его можно отнести разве что лишь к самым этого струнно-клавишного инструмента. Получится дядя-орган с тремя мануалами, которые чем-то похожи на клавиатуру рояля, кучей педалей, которые не модерируют звучание инструмента, а сами несут смысловую нагрузку в виде особо низкого регистра звучания, и огромными тяжелыми свинцовыми трубами, которые в органе заменяют струны.

Вот только именно звучание органа пытались имитировать создатели «древних» синтезаторов. Хотя… у можно было настроить множество звуков, которые и легли в основу представления о хорошем звуке синтезатора. Куда как позже стало возможным синтезировать и звучание рояля.

Сложно себе представить более громкий музыкальный инструмент, чем орган. Разве что колокол. Как и для звонарей, для классических органистов характерны нарушения слуха. Поэтому у органистов складываются совершенно особые отношения с этим инструментом. В конце концов, они просто не смогут играть на чем-либо ином.

Так или иначе, должность органиста считалась церковной – органы в основном устанавливали в церквях и использовали при проведении богослужений. Эта картина вырисовалась в достаточно символичном, 666-м, году, когда папа римский решил ввести орган как основной инструмент звукового сопровождения богослужений.

А вот кто изобрел орган и когда это было – это уже другой вопрос, на который, к сожалению, нет однозначного ответа.

По одним предположениям, орган был изобретен греком по имени Ктесибий, который жил в третьем веке до нашей эры. По другим предположениям, они появились несколько позже.

Так или иначе, но более-менее крупные инструменты появились лишь в четвертом веке нашей эры, а уже в седьмом-восьмом веках они стали довольно популярны в Византии. Так и сложилось в конце концов, что искусство изготовления органов стало развиваться именно в странах значительного религиозного влияния. В данном случае – в Италии. Оттуда они выписывались во Францию, а несколько позже органами заинтересовались и в Германии.

Отличие современных органов от средневековых

Средневековые органы значительно отличались от современных инструментов. Так, например, у них было куда меньше труб и довольно широкие клавиши, на которые не нажимали пальцами, а били кулаком. Расстояние между ними также было довольно значительным и доходило до полутора сантиметров.


Орган в Macy’s Lord &Taylor

Это уже позже, в пятнадцатом веке, увеличилось число труб и уменьшились клавиши. Апофеоз в органостроении был достигнут в 1908-м году, когда для Всемирной выставки был построен орган, ныне располагающийся в Филадельфийском торговом центре Macy’s Lord & Taylor. Он имеет шесть мануалов и весит целых 287 тонн! Раньше он весил несколько меньше, но со временем его достраивали, чтобы увеличить мощность.

А самый громкий орган стоит в Зале Согласия в Атлантик-Сити. У него уже ни много ни мало, а целых семь мануалов и самый широкий в мире тембровый набор. Сейчас он не используется, так как от его звука могут лопнуть барабанные перепонки.

Видео

Орган - музыкальный инструмент, который называют «королём музыки». Грандиозность его звучания выражается в эмоциональном воздействии на слушателя, не имеющем равных. Кроме того, самый большой в мире музыкальный инструмент - орган, и у него самая совершенная система управления. Его высота и длина приравниваются к размеру стены от фундамента до крыши в большом здании - храме или концертном зале.

Выразительный ресурс органа позволяет создавать для него музыку широчайшего объёма содержания: от размышлений о Боге и космосе до тонких интимных отражений человеческой души.

Орган - музыкальный инструмент с уникальной по своей продолжительности историей. Его возраст - около 28 веков. В рамках одной статьи невозможно проследить великий путь этого инструмента в искусстве. Мы ограничились коротким очерком генезиса органа с древнейших времён до тех столетий, когда он приобрёл вид и свойства, известные по сей день.

Историческим предшественником органа является дошедший до нас инструмент флейта Пана (по имени сотворившего её, как упомянуто в мифе). Появление флейты Пана датировано 7 веком до н.э., но реальный возраст, вероятно, гораздо больше.

Так называется музыкальный инструмент, состоящий из вертикально поставленных рядом тростниковых трубочек разной длины. Боковыми поверхностями они прилегают друг к другу, а поперёк объединены пояском из крепкой материи или деревянной планкой. Исполнитель вдувает воздух сверху через отверстия трубочек, и они звучат - каждая на своей высоте. Настоящий умелец игры может использовать сразу две или даже три трубочки для извлечения одновременного звучания и получить двухголосный интервал или, при особом мастерстве, трёхголосный аккорд.

Флейта Пана олицетворяет собой извечное стремление человека к изобретательству, особенно в искусстве, и желание совершенствовать выразительные возможности музыки. До того, как этот инструмент появился на исторической сцене, в распоряжении древнейших музыкантов были более примитивные продольные флейты - простейшие дудочки с отверстиями для пальцев. Их технические возможности были невелики. На продольной флейте невозможно одновременное извлечение двух и более звуков.

В пользу более совершенного звучания флейты Пана говорит также следующий факт. Способ вдувания воздуха в неё - бесконтактный, воздушная струя подаётся губами с некоторого расстояния, что создаёт особый тембровый эффект мистического звучания. Все предшественники органа были духовыми, т.е. использовали управляемую живую силу дыхания для создания Впоследствии эти особенности - многоголосие и призрачно-фантастический «дышащий» тембр - были унаследованы в звуковой палитре органа. Именно они лежат в основе уникальной способности органного звука - вводить слушателя в транс.

От появления флейты Пана до изобретения следующего предшественника органа прошло пять столетий. За это время знатоки духового звукоизвлечения нашли способ, позволяющий бесконечно увеличить ограниченное время человеческого выдоха.

В новом инструменте подача воздуха осуществлялась с помощью кожаных мехов - наподобие тех, которыми пользовался кузнец для нагнетания воздуха.

Появилась также возможность автоматически поддерживать двухголосие и трёхголосие. Один или два голоса - нижние - без перерыва тянули звуки, высота которых не менялась. Эти звуки, называемые «бурдонами» или «фобурдонами», извлекались без участия голоса, непосредственно из мехов через открытые в них отверстия и были чем-то вроде фона. Позднее они получат название «органного пункта».

Первый голос, благодаря уже известному способу закрывания дырочек на отдельной «флейтообразной» вставке в мехи, получил возможность играть достаточно разнообразные и даже виртуозные мелодии. Во вставку исполнитель вдувал воздух губами. В отличие от бурдонов, мелодия извлекалась контактным способом. Поэтому в ней отсутствовал налёт мистики - его взяли на себя бурдонные подголоски.

Этот инструмент приобрёл большую популярность, особенно в народном творчестве, а также среди странствующих музыкантов, и стал называться волынкой. Благодаря её изобретению будущий органный звук приобрёл практически неограниченную протяжность. Пока исполнитель накачивает воздух мехами, звук не прерывается.

Таким образом, проявились три из четырёх будущих звуковых свойств «короля инструментов»: многоголосие, мистическая уникальность тембра и абсолютная протяжность.

Начиная со 2 века до н.э. появляются конструкции, которые всё более приближаются к образу органа. Для нагнетания воздуха греческий изобретатель Ктесебий создаёт гидравлический привод Это позволяет увеличить мощность звука и снабдить нарождающийся колосс-инструмент довольно длинными звучащими трубами. На слух гидравлический орган становится громким и резким. С такими свойствами звука он широко используется в массовых представлениях (ипподромные скачки, цирковые шоу, мистерии) у греков и римлян. С появлением раннего христианства вновь вернулась идея нагнетания воздуха мехами: звук от этого механизма был более живым и «человечным».

Фактически, на этом этапе можно считать сформированными основные особенности органного звука: многоголосная фактура, властно притягивающий внимание тембр, беспрецедентная протяжность и особая мощность, пригодная для привлечения большой массы людей.

Следующие 7 столетий были для органа определяющими в том смысле, что его возможностями заинтересовалась, а затем прочно «присвоила» их и развивала христианская церковь. Органу было суждено стать инструментом массовой проповеди, каким он остаётся вплоть до наших дней. С этой целью его преобразования двигались по двум руслам.

Первое. Физические размеры и акустические способности инструмента достигли невероятных величин. В соответствии с ростом и развитием храмовой архитектуры бурно прогрессировал аспект архитектурно-музыкальный. Орган стали встраивать в стену храма, и его громоподобное звучание подчиняло и потрясало воображение прихожан.

Количество органных труб, которые теперь делали из дерева и металла, достигло нескольких тысяч. Тембры органа обрели широчайший эмоциональный диапазон - от подобия Гласа Божия до тихих откровений религиозной индивидуальности.

Возможности звучания, ранее приобретённые на историческом пути, понадобились в церковном обиходе. Многоголосие органа позволяло усложняющейся музыке отражать многогранные переплетения духовной практики. Протяжность и нагнетаемость тона возвеличили аспект живого дыхания, приблизивший саму природу органного звука к переживаниям уделов человеческой жизни.

С этого этапа орган - музыкальный инструмент огромной убеждающей силы.

Второе направление в развитии инструмента шло по пути усиления его виртуозных возможностей.

Для управления тысячным арсеналом труб нужен был принципиально новый механизм, дающий возможность исполнителю справиться с этим несметным богатством. История сама подсказала нужное решение: появились Идею клавиатурной координации всего массива звучания великолепно адаптировали к устройству «короля музыки». Отныне орган - инструмент клавишно-духовой.

Управление гигантом сосредоточилось за специальным пультом, объединившем в себе колоссальные возможности клавирной техники и гениальные изобретения органных мастеров. Перед органистом теперь располагались в ступенчатом порядке - одна над другой - от двух до семи клавиатур. Внизу, у самого пола под ногами стояла большая педальная клавиатура для извлечения низких тонов. На ней играли ногами. Таким образом, техника органиста требовала большого мастерства. Посадочным местом исполнителя была длинная скамья, поставленная сверху над педальной клавиатурой.

Объединением труб управлял регистровый механизм. Около клавиатур находились специальные кнопки или рукоятки, каждая из которых приводила в действие одновременно десятки, сотни и даже тысячи труб. Чтобы органист не отвлекался на переключение регистров, у него появился помощник - обычно ученик, который должен был разбираться в основах игры на органе.

Орган начинает победное шествие в мировой художественной культуре. К 17 веку он достиг расцвета и небывалых высот в музыке. После увековечения органного искусства в творчестве Иоганна Себастьяна Баха величие этого инструмента остаётся непревзойдённым до наших дней. Сегодня орган - музыкальный инструмент новейшей истории.

Технология выращивания миниатюрных человеческих органов из стволовых клеток стала активно развиваться только в последнее десятилетие. Однако ученые уже смогли получить в лабораторных условиях аналоги сердца, почки, головного мозга, желудка, легких, сетчатки, толстого и тонкого кишечника и так далее. В них есть группы дифференцированных клеток, подобные тем, что имеются в полноразмерных органах.

Чтобы получить органоид, стволовые клетки помещают в среду, которая позволяет им формировать трехмерную структуру. Там они самоорганизуются и дифференцируются в клетки различных типов, повторяя с некоторой степенью точности строение и даже функции реального органа. Такие органоиды уже служат для испытаний лекарств, но не менее важна их роль для фундаментальных исследований, так как с их помощью можно установить генетические механизмы формирования настоящих органов в ходе развития эмбриона.

Развитие любого органа определяется сложным алгоритмом, предусматривающим включение и отключение конкретных генов в нужные моменты. Ученые только начинают узнавать детали этой программы. Позволяет сделать это новая технология – секвенирование РНК из одиночной клетки (single-cell RNA sequencing). Чтение молекул РНК дает возможность определять, какие гены работают в данный момент, так как именно с помощью так называемых информационных, или матричных РНК закодированная в генах информация передается в рибосомы, где происходит синтез белков. РНК – короткоживующая молекула, поэтому конкретную матричную РНК можно встретить, только во время работы связанного с ней гена, не раньше и не позже.

Поэтому ученые выращивают из стволовых клеток, помещенных в объемную среду, органоид и в процессе его развития определяют, секвенируя РНК отдельных клеток, какие гены и насколько активны в данный момент. Специалист по биологии развития Джейсон Спенс (Jason Spence) из Мичиганского университета говорит, что секвенирования одиночных клеток – прекрасный способ описать эти процессы с достаточной степенью строгости.

Использование органоидов позволяет к тому же значительно легче, чем, например, исследования на лабораторных животных, применять различные способы воздействия на генетическую активность клеток. Можно удалять или вставлять отдельные гены при помощи специально сконструированных вирусов или же использовать метод точечного редактирования генома CRISPR/Cas9. А потом смотреть, какой эффект вызвали эти изменения. Биологи даже научились заражать органоиды различными бактериальными или вирусными инфекциями, чтобы определить молекулярный механизм болезни. Сейчас, например, так изучают воздействие на мозг вирусной лихорадки Зика. Кроме того, были разработаны системы совместного культивирования нескольких органоидов, воспроизводящие строение участков организма, включая сеть нейронов и клетки иммунной системы.

На прошлой неделе в журнале Nature было опубликовано самое подробное на настоящий момент исследование формирования из стволовых клеток миниатюрной печени. Один из ее авторов – Таканори Такебе (Takanori Takebe), работающий в университетах Иокогамы и Цинциннати – заинтересовался, можно ли использовать искусственно выращенную ткань печени для трансплантации пациентам. Он научился успешно выращивать в своей лаборатории миниорганы размером всего несколько миллиметров из плюрипотентных стволовых клеток, которые дифференцировались в клетки-предшественники гепатоцитов, мезенхимальные и эндотелиальные клетки.

Но он понимал, что печень из чашки Петри может отличаться от органа естественного происхождения. Внимание Такебе привлекла работа Барбары Третлейн (Barbara Treutlein) из Института молекулярной клеточной биологии и генетики Общества Макса Планка. Барбара руководит лабораторией, которая специализируется на секвенировании РНК одиночных клеток. В работе, на которую обратил внимание Такебе, она исследовала активность генов при формировании легких у эмбрионов летучих мышей. Таканори Такебе предложил ей совместно изучить генетические механизмы роста минипечени из стволовых клеток. Ученых больше всего интересовало взаимодействие разных типов клеток во время формирования органа, ведь иногда сигналом для запуска какого-либо гена в клетке служит белок, выделяемый соседней клеткой другого типа. Среди ведущих авторов работы были также Кейсуке Секине (Keisuke Sekine) из Иокогамы и Дж. Грей Кэмп (J. Gray Camp) из отдела эволюционной генетики Института эволюционной антропологии Общества Макса Планка.

По методу Таканори Такебе выращивались миниатюрные печени, и на разных этапах их развития исследователи брали клетки и секвенировали из них все молекулы РНК, кодирующие белки, определяя активность генов. Каждый раз они получали полный набор активных факторов транскрипции (белков, управляющих работой других генов), сигнальных белков и рецепторов, задействованных в этот конкретный момент.

Для сравнения активность генов также исследовалась в клетках человеческих эмбрионов и в клетках печени взрослого человека. Согласно полученным данным, закономерности работы генов в органоидах весьма близки процессам в естественной эмбриональной печени, но отличаются от печени взрослого.

Органоид печени, выращенный из плюрипотентных стволовых клеток человека.
Зеленым окрашены гепатоциты, красным – клетки кровеносных сосудов.

В частности, впервые в истории авторам удалось определить белки, которые обеспечивают коммуникацию между разными типами клеток в развивающемся органоиде. Для проверки своих результатов исследователи создали много новых маленьких печеней, но при их развитии в среду добавляли ингибиторы, блокирующие действие сигнальных белков. Это позволило ученым по своей воле отключать или включать процессы клеточной дифференциации и формирования органа.

Также им удалось установить роль гипоксии – нехватки кислорода – в процессе роста органоида. Когда скопление клеток становится слишком большим, те клетки, что находятся внутри, начинают испытывать дефицит кислорода. Это заставляет клетки, которые должны дать начало кровеносным сосудам, начать производство белков, ответственных за этот процесс. Если после этого пересадить органоид в печень лабораторной мыши, он сможет подсоединить свои формирующиеся сосуды к ее кровеносной системе.

«Возможность создания биоинженерной трансплантируемой печени или тканей печени будет весьма полезна для людей, страдающих заболеваниями печени, для спасения жизни которых нужны инновационные методы лечения, – прокомментировал Таканори Тейкбе полученные результаты. – Наши данные дают новое, детальное понимание межклеточной коммуникации между развивающимися клетками печени и показывают, что мы можем создавать фрагменты человеческой печени, которые очень удивительно близки к образованиям из эмбриональных клеток, появляющимся в ходе естественного развития человека».

В мае этого года журнал Nature Cell Biology опубликовал другую работу , в которой проверялась возможность использования выращенных в лаборатории миниатюрных легких для исследования вирусных респираторных исследований и муковисцидоза. Коллективом исследователей из Колумбийского университета руководил профессор Ханс-Виллем Снук (Hans-Willem Snoeck). Ученые вырастили модельные органоиды из плюрипотентных стволовых клеток, добившись, чтобы в них возникли аналоги разветвляющихся ветвей бронхов, завершающихся альвеолами. Потом органоиды подвергали воздействию вируса или же, редактируя клеточный геном, воспроизводили мутацию, ответственную за муковисцидоз. В обоих случаях они наблюдали эффекты, характерные для данного заболевания, а значит, такие минилегкие можно использовать в поисках эффективных методов лечения.

Также в этом году группа ученых из США начала использовать миниорганы при лечении рака простаты. Врачи под руководством Хатема Сабауи (Hatem Sabaawy) из Института исследований рака Ратгерского университета (Rutgers Cancer Institute of New Jersey) решили выращивать модельные опухоли из клеток, взятых у пациентов, и подвергать их воздействию препаратов, предложенных для лечения этих пациентов. Если препарат покажет свою эффективность, его будут давать больному.

Культуры опухолевых клеток для испытаний различных средств терапии выращивают уже давно, но исследователи считают, что плоская опухолевая ткань в чашке Петри недостаточно отражает сложность опухоли и плохо предсказывает, как пациенты будут реагировать на лечение. Поэтому они решили построить трехмерные аналоги пораженного опухолью органа. Исследователи также намерены секвенировать ДНК опухолевой ткани, чтобы создать банк генетических профилей, который можно будет использовать для лечения других пациентов.

Профессор Ханс Клеверс (Hans Clevers) из Института Хюбрехта Нидерландской королевской академии наук в данный момент руководит аналогичным проектом, в котором исследуются опухоли толстой кишки. Он говорит, что, хотя исследование находится на ранней стадии, результаты, полученные с первыми пациентами, выглядят многообещающими. По словам Клеверса, лабораторные исследования позволяют подобрать наиболее действенный препарат для конкретного больного и избежать использования тех лекарств, к которым клетки данной опухоли устойчивы. До конца года в Нидерландах будут начаты еще два проекта изучения рака на органоидах, один будет посвящен колоректальному раку, другой – раку молочных желез.

Джатин Ропер (Jatin Roper), руководитель Центра исследований наследственного рака желудочно-кишечного тракта в Медицинском центре Тафтс в Бостоне, сочетает использование органоидов с исследованиями на лабораторных животных. Миниорганы, моделирующие ткань толстого кишечника с опухолью, выращиваются в лаборатории, а затем имплантируются в кишечник мыши. Там клетки опухоли вступают во взаимодействие с другими клетками кишечника, что позволяет исследователям наблюдать рак в более естественной среде, Различные генетические варианты при этом воспроизводятся при помощи технологии CRISPR/Cas9.