Интегрирование рациональных функций. Примеры интегрирования рациональных функций (дробей)

Контрольную работу на интегрирование функций, в том числе и рациональных дробей задают студентам 1, 2 курсов. Примеры интегралов в основном будут интересны для математиков, экономистов, статистов. Данные примеры задавали на контрольной работе в ЛНУ им. И. Франка. Условия следующих примеров "Найти интеграл" или "Вычислить интеграл", поэтому для экономии места и Вашего времени их не выписывали.

Пример 15. Мы пришли к интегрированию дробно-рациональных функций . Они занимают особое место среди интегралов, поскольку требуют много времени на вычисление и помогают преподавателям проверить Ваши знания не только по интегрированию. Для упрощения функции под интегралом добавим и вычтем в числителе выражение, которое позволит разбить функцию под интегралом на две простые


В результате один интеграл находим довольно быстро, во втором нужно дробь разложить на суму элементарных дробей

При сведении к общему знаменателю получим такие числительные

Далее раскрываем скобки и группируем

Приравниваем значение при одинаковых степенях "икс" справа и слева. В результате придем к системе трех линейных уравнений (СЛАУ) с тремя неизвестными.

Как решать системы уравнений описано в других статьях сайта. В конечном варианте Вы получите следующее решения СЛАУ
A=4; B=-9/2; C=-7/2.
Подставляем постоянные в разложение дроби на простейшие и выполняем интегрирование


На этом пример решен.

Пример 16. Опять нужно найти интеграл от дробно-рациональной функции. Для начала кубическое уравнение, которое содержится в знаменателе дроби разложим на простые множители

Далее выполняем разложение дроби на простейшие

Сводим правую сторону к общему знаменателю и раскрываем скобки в числителе.


Приравниваем коэффициенты при одинаковых степенях переменной. Снова придем к СЛАУ с тремя неизвестными

Подставляем значения А,В,С в разложение и вычисляем интеграл

Первые два слагаемых дают логарифм, последний тоже легко найти.

Пример 17. В знаменателе дробно-рациональной функции имеем разницу кубов. Ее по формулам сокращенного умножения раскладываем на два простых множителя

Далее полученную дробную функцию расписываем на сумму простых дробей и сводим их под общий знаменатель

В числителе получим следующее выражение.

Из него формируем систему линейных уравнений для вычисления 3 неизвестных

A=1/3; B=-1/3; C=1/3.
Подставляем А, В, С в формулу и выполняем интегрирование. В результате придем к такому ответу


Здесь числитель второго интеграла превращали в логарифм, при этом остаток под интегралом дает арктангенс.
Подобных примеров на интегрирование рациональных дробей в интернете очень много. Похожие примеры Вы можете найти из приведенных ниже материалов.

Интегрирование дробно-рациональной функции.
Метод неопределенных коэффициентов

Продолжаем заниматься интегрированием дробей. Интегралы от некоторых видов дробей мы уже рассмотрели на уроке , и этот урок в некотором смысле можно считать продолжением. Для успешного понимания материала необходимы базовые навыки интегрирования, поэтому если Вы только приступили к изучению интегралов, то есть, являетесь чайником, то необходимо начать со статьи Неопределенный интеграл. Примеры решений .

Как ни странно, сейчас мы будем заниматься не столько нахождением интегралов, сколько… решением систем линейных уравнений. В этой связи настоятельно рекомендую посетить урок А именно – нужно хорошо ориентироваться в методах подстановки («школьном» методе и методе почленного сложения (вычитания) уравнений системы).

Что такое дробно-рациональная функция? Простыми словами, дробно-рациональная функция – это дробь, в числителе и знаменателе которой находятся многочлены либо произведения многочленов. При этом дроби являются более навороченными, нежели те, о которых шла речь в статье Интегрирование некоторых дробей .

Интегрирование правильной дробно-рациональной функции

Сразу пример и типовой алгоритм решения интеграла от дробно-рациональной функции.

Пример 1


Шаг 1. Первое, что мы ВСЕГДА делаем при решении интеграла от дробно-рациональной функции – это выясняем следующий вопрос: является ли дробь правильной? Данный шаг выполняется устно, и сейчас я объясню как:

Сначала смотрим на числитель и выясняем старшую степень многочлена:

Старшая степень числителя равна двум.

Теперь смотрим на знаменатель и выясняем старшую степень знаменателя. Напрашивающийся путь – это раскрыть скобки и привести подобные слагаемые, но можно поступить проще, в каждой скобке находим старшую степень

и мысленно умножаем: – таким образом, старшая степень знаменателя равна трём. Совершенно очевидно, что если реально раскрыть скобки, то мы не получим степени, больше трёх.

Вывод : Старшая степень числителя СТРОГО меньше старшей степени знаменателя, значит, дробь является правильной.

Если бы в данном примере в числителе находился многочлен 3, 4, 5 и т.д. степени, то дробь была бы неправильной .

Сейчас мы будем рассматривать только правильные дробно-рациональные функции . Случай, когда степень числителя больше либо равна степени знаменателя, разберём в конце урока.

Шаг 2. Разложим знаменатель на множители. Смотрим на наш знаменатель:

Вообще говоря, здесь уже произведение множителей, но, тем не менее, задаемся вопросом: нельзя ли что-нибудь разложить еще? Объектом пыток, несомненно, выступит квадратный трехчлен. Решаем квадратное уравнение:

Дискриминант больше нуля, значит, трехчлен действительно раскладывается на множители:

Общее правило: ВСЁ, что в знаменателе МОЖНО разложить на множители – раскладываем на множители

Начинаем оформлять решение:

Шаг 3. Методом неопределенных коэффициентов раскладываем подынтегральную функцию в сумму простых (элементарных) дробей. Сейчас будет понятнее.

Смотрим на нашу подынтегральную функцию:

И, знаете, как-то проскакивает интуитивная мысль, что неплохо бы нашу большую дробь превратить в несколько маленьких. Например, вот так:

Возникает вопрос, а можно ли вообще так сделать? Вздохнем с облегчением, соответствующая теорема математического анализа утверждает – МОЖНО. Такое разложение существует и единственно .

Только есть одна загвоздочка, коэффициенты мы пока не знаем, отсюда и название – метод неопределенных коэффициентов.

Как вы догадались, последующие телодвижения так, не гоготать! будут направлены на то, чтобы как раз их УЗНАТЬ – выяснить, чему же равны .

Будьте внимательны, подробно объясняю один раз!

Итак, начинаем плясать от:

В левой части приводим выражение к общему знаменателю:

Теперь благополучно избавляемся от знаменателей (т.к. они одинаковы):

В левой части раскрываем скобки, неизвестные коэффициенты при этом пока не трогаем:

Заодно повторяем школьное правило умножение многочленов. В свою бытность учителем, я научился выговаривать это правило с каменным лицом: Для того чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена .

С точки зрения понятного объяснения коэффициенты лучше внести в скобки (хотя лично я никогда этого не делаю в целях экономии времени):

Составляем систему линейных уравнений.
Сначала разыскиваем старшие степени:

И записываем соответствующие коэффициенты в первое уравнение системы:

Хорошо запомните следующий нюанс . Что было бы, если б в правой части вообще не было ? Скажем, красовалось бы просто без всякого квадрата? В этом случае в уравнении системы нужно было бы поставить справа ноль: . Почему ноль? А потому что в правой части всегда можно приписать этот самый квадрат с нулём: Если в правой части отсутствуют какие-нибудь переменные или (и) свободный член, то в правых частях соответствующих уравнений системы ставим нули .

Записываем соответствующие коэффициенты во второе уравнение системы:

И, наконец, минералка, подбираем свободные члены.

Эх,…что-то я расшутился. Шутки прочь – математика наука серьезная. У нас в институтской группе никто не смеялся, когда доцент сказала, что разбросает члены по числовой прямой и выберет из них самые большие. Настраиваемся на серьезный лад. Хотя… кто доживет до конца этого урока, все равно будет тихо улыбаться.

Система готова:

Решаем систему:

(1) Из первого уравнения выражаем и подставляем его во 2-е и 3-е уравнения системы. На самом деле можно было выразить (или другую букву) из другого уравнения, но в данном случае выгодно выразить именно из 1-го уравнения, поскольку там самые маленькие коэффициенты .

(2) Приводим подобные слагаемые во 2-м и 3-м уравнениях.

(3) Почленно складываем 2-е и 3-е уравнение, при этом, получая равенство , из которого следует, что

(4) Подставляем во второе (или третье) уравнение, откуда находим, что

(5) Подставляем и в первое уравнение, получая .

Если возникли трудности с методами решения системы отработайте их на уроке Как решить систему линейных уравнений?

После решения системы всегда полезно сделать проверку – подставить найденные значения в каждое уравнение системы, в результате всё должно «сойтись».

Почти приехали. Коэффициенты найдены, при этом:

Чистовое оформление задание должно выглядеть примерно так:




Как видите, основная трудность задания состояла в том, чтобы составить (правильно!) и решить (правильно!) систему линейных уравнений. А на завершающем этапе всё не так сложно: используем свойства линейности неопределенного интеграла и интегрируем. Обращаю внимание, что под каждым из трёх интегралов у нас «халявная» сложная функция, об особенностях ее интегрирования я рассказал на уроке Метод замены переменной в неопределенном интеграле .

Проверка: Дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.
В ходе проверки пришлось приводить выражение к общему знаменателю, и это не случайно. Метод неопределенных коэффициентов и приведение выражения к общему знаменателю – это взаимно обратные действия .

Пример 2

Найти неопределенный интеграл.

Вернемся к дроби из первого примера: . Нетрудно заметить, что в знаменателе все множители РАЗНЫЕ. Возникает вопрос, а что делать, если дана, например, такая дробь: ? Здесь в знаменателе у нас степени, или, по-математически кратные множители . Кроме того, есть неразложимый на множители квадратный трехчлен (легко убедиться, что дискриминант уравнения отрицателен, поэтому на множители трехчлен никак не разложить). Что делать? Разложение в сумму элементарных дробей будет выглядеть наподобие с неизвестными коэффициентами вверху или как-то по-другому?

Пример 3

Представить функцию

Шаг 1. Проверяем, правильная ли у нас дробь
Старшая степень числителя: 2
Старшая степень знаменателя: 8
, значит, дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Очевидно, что нет, всё уже разложено. Квадратный трехчлен не раскладывается в произведение по указанным выше причинам. Гуд. Работы меньше.

Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей.
В данном случае, разложение имеет следующий вид:

Смотрим на наш знаменатель:
При разложении дробно-рациональной функции в сумму элементарных дробей можно выделить три принципиальных момента:

1) Если в знаменателе находится «одинокий» множитель в первой степени (в нашем случае ), то вверху ставим неопределенный коэффициент (в нашем случае ). Примеры №1,2 состояли только из таких «одиноких» множителей.

2) Если в знаменателе есть кратный множитель , то раскладывать нужно так:
– то есть последовательно перебрать все степени «икса» от первой до энной степени. В нашем примере два кратных множителя: и , еще раз взгляните на приведенное мной разложение и убедитесь, что они разложены именно по этому правилу.

3) Если в знаменателе находится неразложимый многочлен второй степени (в нашем случае ), то при разложении в числителе нужно записать линейную функцию с неопределенными коэффициентами (в нашем случае с неопределенными коэффициентами и ).

На самом деле, есть еще 4-й случай, но о нём я умолчу, поскольку на практике он встречается крайне редко.

Пример 4

Представить функцию в виде суммы элементарных дробей с неизвестными коэффициентами.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Строго следуйте алгоритму!

Если Вы разобрались, по каким принципам нужно раскладывать дробно-рациональную функцию в сумму, то сможете разгрызть практически любой интеграл рассматриваемого типа.

Пример 5

Найти неопределенный интеграл.

Шаг 1. Очевидно, что дробь является правильной:

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Можно. Здесь сумма кубов . Раскладываем знаменатель на множители, используя формулу сокращенного умножения

Шаг 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Обратите внимание, что многочлен неразложим на множители (проверьте, что дискриминант отрицательный), поэтому вверху мы ставим линейную функцию с неизвестными коэффициентами, а не просто одну буковку.

Приводим дробь к общему знаменателю:

Составим и решим систему:

(1) Из первого уравнения выражаем и подставляем во второе уравнение системы (это наиболее рациональный способ).

(2) Приводим подобные слагаемые во втором уравнении.

(3) Почленно складываем второе и третье уравнения системы.

Все дальнейшие расчеты, в принципе, устные, так как система несложная.

(1) Записываем сумму дробей в соответствии с найденными коэффициентами .

(2) Используем свойства линейности неопределенного интеграла. Что произошло во втором интеграле? С этим методом Вы можете ознакомиться в последнем параграфе урока Интегрирование некоторых дробей .

(3) Еще раз используем свойства линейности. В третьем интеграле начинаем выделять полный квадрат (предпоследний параграф урока Интегрирование некоторых дробей ).

(4) Берём второй интеграл, в третьем – выделяем полный квадрат.

(5) Берём третий интеграл. Готово.

Одним из важнейших классов функций, интегралы от которых выражаются через элементарные функции, является класс рациональных функций.

Определение 1. Функция вида где
- многочлены степеней
n и m называется рациональной. Целая рациональная функция, т.е. многочлен, интегрируется непосредственно. Интеграл от дробно-рациональной функции можно найти путем разложения на слагаемые, которые стандартным образом преобразуются к основным табличным интегралам.

Определение 2. Дробь
называется правильной, если степень числителя
n меньше степени знаменателя m . Дробь, у которой степень числителя больше или равна степени знаменателя, называется неправильной.

Любую неправильную дробь можно представить в виде суммы многочлена и правильной дроби. Это делается посредством деления многочлена на многочлен «столбиком», подобно делению чисел.

Пример.

Представим дробь
в виде суммы многочлена и правильной дроби:

x - 1


3

3

3

Первое слагаемое
в частном получается как результат деления старшего члена
, делимого на старший членх делителя. Затем умножаем
на делительх-1 и полученный результат вычитаем из делимого; аналогично находятся остальные слагаемые неполного частного.

Выполнив деление многочленов, получим:

Это действие называется выделением целой части.

Определение 3. Простейшими дробями называются правильные рациональные дроби следующих типов:

I.

II.
(K=2, 3, …).

III.
где квадратный трехчлен

IV.
где К=2, 3, …; квадратный трехчлен
не имеет действительных корней.

а) разложить знаменатель
на простейшие действительные множители (согласно основной теореме алгебры это разложение может содержать линейные двучлены вида
и квадратные трехчлены
, не имеющие корней);

б) написать схему разложения данной дроби на сумму простейших дробей. При этом каждому сомножителю вида
соответствуетk слагаемых видов I и II:

каждому сомножителю вида
соответствует е слагаемых видовIII и IV:

Пример.

Записать схему разложения дроби
в сумму простейших.

в) выполнить сложение полученных простейших дробей. Записать равенство числителей полученной и исходной дробей;

г) найти коэффициенты соответствующего разложения:
(методы решения будут рассмотрены ниже);

д) найденные значения коэффициентов подставить в схему разложения.

Интегрирование всякой правильной рациональной дроби после разложения на простейшие слагаемые сводится к нахождению интегралов одного из типов:




(k и e =2, 3, …).

Вычисление интеграла сводится к формулеIII:

интеграла - к формулеII:

интеграл можно найти по правилу, указанному в теории интегрирования функций, содержащих квадратный трехчлен;- путем преобразований, показанных ниже в примере 4.

Пример 1.

а) разложим знаменатель на множители:

б) напишем схему разложения подынтегральной функции на слагаемые:

в) выполним сложение простейших дробей:

Запишем равенство числителей дробей:

г) для нахождения неизвестных коэффициентов A, B, C существуют два метода.

Два многочлена равны тогда и только тогда, когда равны их коэффициенты при одинаковых степенях х , поэтому можно составить соответствующую систему уравнений. В этом заключается один из методов решения.

Коэффициенты при

свободные члены (коэф. при ):4А=8.

Решив систему, получим А=2 , В=1 , С= - 10 .

Другой метод - частных значений будет рассмотрен в следующем примере;

д) подставим найденные значения в схему разложения:

Подставляя под знак интеграла полученную сумму, и интегрируя каждое слагаемое отдельно, найдем:

Пример 2.

Тождество есть равенство, справедливое при любых значениях входящих в него неизвестных. На этом основан метод частных значений. Можно придавать х любые значения. Удобнее для вычислений брать те значения, которые обращают в нуль какие-либо слагаемые в правой части равенства.

Пусть х = 0 . Тогда 1 = А 0(0+2)+В 0 (0-1)+С (0-1)(0+2).

Аналогично при х = - 2 имеем 1= - 2В*(-3 ), при х = 1 имеем 1 = 3А .

Следовательно,

Пример 3.

г) сначала воспользуемся методом частных значений.

Пусть х = 0 , тогда 1 = А 1, А = 1 .

При х = - 1 имеем - 1+4+2+1 = - В(1+1+1) или 6 = - 3В , В = - 2 .

Для нахождения коэффициентов С и D нужно составить еще два уравнения. Для этого можно взять любые другие значения х , например х = 1 и х = 2 . Можно воспользоваться первым методом, т.е. приравнять коэффициенты при каких-либо одинаковых степенях х , например при и. Получим

1 = А+В+С и 4 = С + D – В.

Зная А = 1 , В = -2 , найдем С = 2 , D = 0 .

Таким образом, при вычислении коэффициентов можно сочетать оба метода.

Последний интеграл находим отдельно по правилу, указанному в методе веления новой переменной. Выделим полный квадрат в знаменателе:

положим,
тогда
Получим:

=

Подставляя в предыдущее равенство, найдем

Пример 4.

Найти

б)

д)

Интегрируя, имеем:

Первый интеграл преобразуем к формуле III:

Второй интеграл преобразуем к формуле II:

В третьем интеграле заменим переменную:

(При выполнении преобразований воспользовались формулой тригонометрии

Найти интегралы:

51.

52.

53.

54.

55.

56.

57.

58.

Вопросы для самопроверки.

    Какие из данных рациональных дробей являются правильными:

2. Верно ли записана схема разложения дроби на сумму простейших дробей?


Рациональная функция - это дробь вида , числитель и знаменатель которой - многочлены или произведения многочленов.

Пример 1. Шаг 2.

.

Умножаем неопределённые коэффициенты на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях:

Раскрываем скобки и приравниваем полученое к полученному выражению числитель исходной подынтегральной дроби:

В обеих частях равенства отыскиваем слагаемые с одинаковыми степенями икса и составляем из них систему уравнений:

.

Сокращаем все иксы и получаем эквивалентную систему уравнений:

.

Таким образом, окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 2. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Теперь начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Теперь требуется составить и решить систему уравнений. Для этого приравниваем коэффициенты при переменной в соответствующей степени в числителе исходного выражения функции и аналогичные коэффициенты в полученном на предыдущем шаге выражения:

Решаем полученную систему:

Итак, , отсюда

.

Пример 3. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Как и в предыдущих примерах составляем систему уравнений:

Сокращаем иксы и получаем эквивалентную систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 4. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Как приравнивать числитель исходной дроби к выражению в числителе, полученному после разложения дроби на сумму простых дробей и приведения этой суммы к общему знаменателю, мы уже знаем из предыдуших примеров. Поэтому лишь для контроля приведём получившуюся систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

Пример 5. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Самостоятельно приводим к общему знаменателю эту сумму, приравнивать числитель этого выражения к числителю исходной дроби. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 6. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Производим с этой суммой те же действия, что и в предыдущих примерах. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 7. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

После известных действий с полученной суммой должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 8. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Внесём некоторые изменения в уже доведённые до автоматизма действия для получения системы уравнений. Есть искусственный приём, который в некоторых случаях помогает избежать лишних вычислений. Приводя сумму дробей к общему знаменателю получаем и приравнивая числитель этого выражения к числителю исходной дроби, получаем.

«Математик так же, как художник или поэт, создает узоры. И если его узоры более устойчивы, то лишь потому, что они составлены из идей... Узоры математика так же, как узоры художника или поэта, должны быть прекрасны; идеи так же, как цвета или слова, должны соответствовать друг другу. Красота есть первое требование: в мире нет места для некрасивой математики ».

Г.Х.Харди

В первой главе отмечалось, что существуют первообразные довольно простых функций, которые уже нельзя выразить через элементарные функции. В связи с этим, огромное практическое значение приобретают те классы функций, о которых можно точно сказать, что их первообразные – элементарные функции. К такому классу функций относятся рациональные функции , представляющие собой отношение двух алгебраических многочленов. К интегрированию рациональных дробей приводят многие задачи. Поэтому очень важно уметь интегрировать такие функции.

2.1.1. Дробно-рациональные функции

Рациональной дробью (или дробно-рациональной функцией )называется отношение двух алгебраических многочленов:

где и – многочлены.

Напомним, что многочленом (полиномом , целой рациональной функцией ) n -й степени называется функция вида

где – действительные числа. Например,

– многочлен первой степени;

– многочлен четвертой степени и т.д.

Рациональная дробь (2.1.1) называется правильной , если степень ниже степени , т.е. n <m , в противном случае дробь называется неправильной .

Любую неправильную дробь можно представить в виде суммы многочлена (целой части) и правильной дроби (дробной части). Выделение целой и дробной частей неправильной дроби можно производить по правилу деления многочленов «уголком».

Пример 2.1.1. Выделить целую и дробную части следующих неправильных рациональных дробей:

а) , б) .

Решение . а) Используя алгоритм деления «уголком», получаем

Таким образом, получаем

.

б) Здесь также используем алгоритм деления «уголком»:

В результате, получаем

.

Подведём итоги. Неопределённый интеграл от рациональной дроби в общем случае можно представить суммой интегралов от многочлена и от правильной рациональной дроби. Нахождение первообразных от многочленов не представляет трудностей. Поэтому в дальнейшем будем рассматривать в основном правильные рациональные дроби.

2.1.2. Простейшие рациональные дроби и их интегрирование

Среди правильных рациональных дробей выделяют четыре типа, которые относят кпростейшим (элементарным) рациональным дробям:

3) ,

4) ,

где – целое число, , т.е. квадратный трёхчлен не имеет действительных корней.

Интегрирование простейших дробей 1-го и 2-го типа не представляет больших трудностей:

, (2.1.3)

. (2.1.4)

Рассмотрим теперь интегрирование простейших дробей 3-го типа, а дроби 4-го типа рассматривать не будем.

Начнём с интегралов вида

.

Данный интеграл обычно вычисляют путем выделения полного квадрата в знаменателе. В результате получается табличный интеграл следующего вида

или .

Пример 2.1.2. Найти интегралы:

а) , б) .

Решение . а) Выделим из квадратного трёхчлена полный квадрат:

Отсюда находим

б) Выделив из квадратного трёхчлена полный квадрат, получаем:

Таким образом,

.

Для нахождения интеграла

можно выделить в числителе производную знаменателя и разложить интеграл на сумму двух интегралов: первый из них подстановкой сводится к виду

,

а второй – к рассмотренному выше.

Пример 2.1.3. Найти интегралы:

.

Решение . Заметим, что . Выделим в числителе производную знаменателя:

Первый интеграл вычисляется при помощи подстановки :

Во втором интеграле выделим полный квадрат в знаменателе

Окончательно, получаем

2.1.3. Разложение правильной рациональный дроби
на сумму простейших дробей

Любую правильную рациональную дробь можно представить единственным образом в виде суммы простейших дробей. Для этого знаменатель нужно разложить на множители. Из высшей алгебры известно, что каждый многочлен с действительными коэффициентами