Степень сжатия h 264 mpeg 4 avc. Формат сжатия H.264,что это за формат? Перспективы развития технологий сжатия видео

Он будет сильно отличаться в зависимости от содержимого исходных видео. Я доберусь до этого немного.

640x360 не так уж и велика. 512 Кбит/с очень разумно и, возможно, стандартно. Может быть, 768 кбит/с, если вы действительно заинтересованы в качестве.

Как это возможно? Упрощенный ответ: Существует несколько методов и фактов о сжатии видео , которые делают это возможным:

  • Не вся структура видеокадра в общем H.264 (или другие кодеки, если на то пошло) - это полное изображение . Вместо этого существуют два типа, которые в обычном порядке называются
    • Ключевые фреймы : полный рендеринг всего видеоизображения
    • Внутри кадра : описание изменений предыдущего кадра. Эти кадры обычно составляют подавляющее большинство (80% -99%) кадров в видео.
  • H.264 является "потерянным" , как и многие другие кодеки. Они не воспроизводят поэтапный, поэтапный точный дубликат исходного исходного видео. Пример : Блоки Lossy: если все, кроме одного пикселя в области, имеют один и тот же цвет, CODEC "теряет" один пиксель. Таким образом, вместо того, чтобы хранить информацию о каждом пикселе в кадре, CODEC просто говорит: "x1, y1 - x2, y2 - весь цвет x". Очень эффективный.

Все это намного сложнее, чем это, с использованием различных подходов, методов и алгоритмов в рамках определенных кодеков и между CODEC, чтобы это произошло.

Итак, вернемся к разделу "Это сильно изменится в зависимости от содержимого исходного видео". Коэффициент сжатия, который вы увидите, и результирующее качество, будут в значительной степени зависеть от:

  • содержимое видео
  • ваш толерантность к артефактам (блоки, потеря цвета, потеря определения)
  • параметры CODEC, которые вы установили, и способы их установки

Пример . Видео с дверью в комнате (например, камерой безопасности) с одним ключевым кадром каждые десять минут будет иметь удивительно высокую степень сжатия. В моих расчетах на основе салфеток этот сценарий был применен при сжатии 15 000: 1.

Поскольку вы начинаете с большого проекта кодирования видео, я бы порекомендовал пару вещей, чтобы определить, какова будет ваша степень сжатия:

  • возьмите образец исходных видео, которые вы собираетесь кодировать. 100 или более являются статистически релевантными.
  • закодировать их с различными скоростями передачи данных с различными параметрами, чтобы определить, какие итоговые характеристики соответствуют вашим потребностям.

Изменение параметров кодировщика для уменьшения размера видео может также иметь другие последствия:

  • более высокие требования к процессору.
  • ожидания игроков CODEC. Не все видео, закодированные в формате H.264, могут воспроизводиться всеми игроками.
  • более длительное время кодирования
  • различное качество

Это очень сложный вопрос. Удачи. Мой опытный тест "большой палец к ветру" говорит, что вы будете более чем счастливы с 512-768 кбит/с для своего проекта.

27.03.2009

В наш век маркетинга и сквозной девальвации оценочных категорий сложно верить чему-либо на слово. Лишь пахнёт серьезными деньгами -- появляются купленные мнения авторитетных персон, подделываются результаты исследований, порхают с железки на железку шильдики с именами вековых брендов. Ужас в том, что, строго говоря, нельзя верить и прессе. Ну, если нельзя, но очень хочется, то -- можно...

Наблюдая за последними тенденциями в области сжатия цифрового видео, редакция Security News старается обращать внимание не только на позитивные оценки мировых отраслевых экспертов, но и на скептические нотки. Если повезет, попадается и жесткая критика. Два экспертных мнения, которые мы публикуем, относятся скорее к позитиву, хотя, по некоторым признакам, они лишь закамуфлированы под "объективные". Приглашаем к дискуссии отечественных специалистов: в российской отраслевой прессе еще несколько лет назад все прогнозы сходились на Wavelet-кодировании. Почему "победило" другое решение, по техническим мотивам или в погоне за прибылью? И победило ли вообще? Ждем ваших мнений.

Не так давно мне довелось присутствовать на двух выставках -- ISC West в Лас-Вегасе и IFSEC в Соединенном Королевстве. Сильная сторона этих мероприятий -- в том, что по ним можно безошибочно определить, куда дует рыночный ветер и чем заняты умы коллег по отрасли. Будучи техническим руководителем компании, производящей управляющее ПО для систем IP-видеонаблюдения, я был весьма заинтересован в том, чтобы отделить зерна от плевел.

Поскольку участвовать в обеих выставках приходилось и раньше, я прекрасно понимал, что прессу здесь будет интересовать только "самое последнее и самое крутое". Зацепившись за какую-нибудь тему, СМИ словно стартуют забег -- кто эффектнее подаст самое последнее из распоследних и величайшее из великих. Однако не будем забывать и о том, что еще пару лет назад такой "горячей" темой было IP-видеонаблюдение -- а сегодня оно уже становится фактическим стандартом, значительно опередив в развитии аналоговые технологии.

В этом году предметом горячих обсуждений стал новый формат сжатия видеосигнала H.264. Напомню, что он явился совместной разработкой двух международных организаций по стандартизации -- и ISO/IEC; этот формат также известен под названием MPEG-4 Part 10 AVC (Advanced Video Coding, продвинутая кодировка видеосигнала).

Сжимать еще сильнее

Аппетиты видеонаблюдения в отношении объемов хранения данных и пропускной способности сетей растут: никто не хочет упустить возможность воспользоваться большой частотой кадров и высоким разрешением. Отсюда и ожидания большей эффективности от методов сжатия видеосигнала. Кодер формата H.264 способен уменьшить размер файла, содержащего цифровое видео, более чем на 80% по сравнению с сигналом, сжатым по алгоритму формата Motion JPEG, при аналогичных показателях визуального качества. В сравнении с наиболее "ходовой" разновидностью формата MPEG-4 -- MPEG-4 Part 2 Simple Profile (SP) -- кодек H.264 обычно выигрывает 40-50 процентов от объема видеофайлов.

Сектор мегапиксельных камер растет, и до недавнего времени основным сдерживающим его рост фактором считались повышенные требования к объемам хранения данных, генерируемых камерами высокого разрешения. Использование кодека H.264 способно значительно ускорить процесс внедрения мегапиксельных камер.

По моему личному мнению, формат H.264 почти окончательно вытеснит MPEG-4 (Part 2) в течение буквально нескольких лет. А поставщики решений управления видеонаблюдением примутся встраивать поддержку нового формата уже в ближайшем будущем, равно как и все ведущие производители видеокамер.

Ложка дегтя

Есть, однако, и факторы, сдерживающие восторг от новинки -- ведь, по сути, разработка находится еще в самом начале пути. Да, кодек позволяет снизить нагрузку на сети передачи данных и сэкономить на приобретении средств хранения видеоинформации. Но его использование возможно только в условиях применения высокопроизводительных камер. Новый алгоритм сжатия использует значительно более сложную математику, чем предыдущие стандарты -- скажем, процедура декодирования примерно вдвое превосходит аналогичную процедуру у MPEG-4 Part 2 SP по объемам вычислений -- соответственно этому растет и запрос к вычислительной мощности систем. При этом собственно стандартом H.264 стал относительно давно -- около пяти лет назад, и в некоторых отраслях -- исключая нашу с вами -- уже взят на вооружение. Скажем, он используется в новом поколении потребительских DVD-дисков высокого разрешения (формат Blu-ray).

Как это работает

H.264 является гибридным стандартом блочного кодирования видеоданных с использованием компенсации движения. Собственно компенсация основана на использовании векторов перемещения областей кадра для предсказания изменений в изображении. Поскольку для видеоизображений характерна высокая степень корреляции между двумя последовательными кадрами, возможно использовать это для кодирования не картинки целиком, а лишь векторов перемещения различных частей изображения; кодируется при этом предсказанная разница между текущим кадром и его областями, присутствующими на других кадрах (так называемых ссылочных) в смещенном относительно оригинального положения виде. Эта техника называется "промежуточное предсказание".

Существует два основных метода промежуточного предсказания -- основанное на одном ссылочном кадре (макроблоки типа P) и двунаправленное (макроблоки типа В), где используется комбинация двух ссылочных кадров. Чтобы обеспечить доступ к произвольным участкам видеоизображения и повысить степень защищенности от ошибок, стандартом также предусмотрено так называемое инфракодирование, при котором кодированные данные не зависят от характера и содержания каких-либо сторонних изображений, как это происходит в случае применения промежуточного предсказания.

Стандартом H.264 предусматривается разбиение изображения на макроблоки размером до 16х16 пикселов каждый. Макроблоки объединяются в группы -- одну или несколько -- обычно в порядке сканирования. Таким образом, отдельное изображение может быть закодировано как одна или несколько групп. Использование группирования макроблоков позволяет применять различные методы коррекции ошибок, различные типы кодирования макроблоков, а также такие инструменты, как раздельное кодирование полукадров (на правах групп) при чересстрочной развертке.

В цветных видеоизображениях кодирование яркостной составляющей происходит отдельно от цветовой; учитывая особенности человеческого зрения, при этом, как правило, используется поддискретизация цветового сигнала относительно яркостного. По большому счету, фундаментальных отличий нового формата от предыдущих стандартов кодирования видеосигнала (включая MPEG-4 Part 2) нет: все они так или иначе основаны на разбиении на блоки и являются гибридными.

Новые средства

Помимо улучшений, которым подверглись уже существующие средства кодирования, формат H.264 предусматривает и ряд новых инструментов. Наиболее важными из них являются встроенный адаптивный деблокирующий фильтр, позволяющий существенно снизить блокинг-искажения изображения, запись более чем двух ссылочных кадров для более точного предсказания, деление макроблоков на блоки меньшего размера (вплоть до 4х4 пиксела), предсказание в инфракодировании, а также применение целочисленного преобразования взамен применявшегося в более ранних стандартах дискретного косинусного преобразования (DCT).

В формат H.264 входит принципиальное решение сетевого интерфейса передачи видеоданных (network abstraction layer, NAL), который, будучи установлен поверх программного механизма кодирования видеосигнала (video coding layer, VCL), берет на себя функцию эффективного представления цифрового видео в формате, обеспечивающем легкую интеграцию с целым набором различных протоколов и механизмов передачи данных -- это весьма привлекательно для сетей, работающих на основе Интернет-протокола (IP).

Что в итоге?

Главный результат всех усовершенствований технологии кодирования, воплощенных в стандарте H.264, состоит в том, что новый формат действительно превосходит по своим характеристикам все предыдущие алгоритмы сжатия цифрового видеосигнала -- и потому на сегодняшний день может считаться высшим достижением в области кодирования цифрового видео.

Итак, стОит ли Н.264 всей медиа-шумихи, развернутой вокруг него? Стандарты видеокомпрессии с приходом нового формата стали стремительно меняться -- и сегодня они уже способны сохранить либо даже снизить нагрузку на пропускную способность сетей передачи данных при переходе на видео высокого разрешения. И это является весьма ценным.

Однако же, будем помнить, что все прелести новой технологии кодирования и хлынувших на рынок все более мощных мегапиксельных камер могут быть реализованы лишь при использовании крепкой управляющей платформы, на базе которой формируются решения видеонаблюдения. Применение стопроцентно открытых платформ по управлению IP-видеонаблюдением позволит вам интегрировать новые технологические решения в уже существующую у вас серверную инфраструктуру -- без необходимости полной замены аппаратной части системы.

Правда или маркетинг. Оправдает ли H.264 ожидания пользователей?

Том Гэлвин, директор консалтинговой компании NetVideo Consulting, в прошлом -- вице-президент компании GE Security по инженерным вопросам.
По материалам журнала Security Dealer and Integrator
.

Вот и взяла старт гонка по внедрению стандарта видеокомпрессии H.264. Производители принимают этот формат в качестве стандартного для своих цифровых видеорегистраторов, сетевых камер и кодеров, наперебой обещая снижение объемов видеоданных вплоть до 50 процентов по сравнению со сжатием MPEG-4. Пятидесятипроцентное снижение -- заявка серьезная, поскольку это может в огромной степени повлиять на показатели общей стоимости владения систем видеонаблюдения. Снижение битрейтов оборачивается наращиванием объемов хранения цифровых данных, снижением нагрузки на сетевую инфраструктуру либо повышением качества видеоизображения при тех же скоростях передачи цифровой информации.

Руководствуясь чисто профессиональным интересом, я решил ответить на вопрос: а дотягивает ли кодек до уровня, которым его наделили многочисленные обещания? А чтобы ответ не был голословным, подтвердить вывод непосредственным сравнением эффективности компрессии алгоритмов MPEG-4 и H.264. Самое интересное -- способен ли H.264 реально снизить битрейты без потери качества видеоизображения?

Стандарт H.264 обязан своим появлением двум разным группам экспертов, объединившимся специально в целях его создания. Появившийся в результате совместных трудов продукт получил известность под разными именами. "H.264" его окрестила организация ITU-T, осуществляющая координацию телекоммуникационных стандартов Международного Телекоммуникационного союза (International Telecommunication Union). Международная организация по стандартизации (International Organization for Standardization, ISO) называет тот же самый стандарт по-своему -- MPEG-4 Part 10/Advanced Video Coding (AVC), поскольку он является расширением пакета стандартов MPEG-4, уже успешно внедренного в обширный ряд продуктов, относящихся к видеонаблюдению. Охранная индустрия США приняла в качестве термина несколько менее аристократичное, но более короткое название -- "просто" H.264.

Новый стандарт определяет ряд математических принципов, применение которых при сжатии видеосигнала позволяет добиться более успешных результатов, чем это наблюдается в ранее принятых стандартах. Многие из описанных в нем алгоритмов весьма требовательны к вычислительной мощности оборудования либо неприменимы в ряде конкретных приложений. Чтобы обеспечить нужную гибкость в применении, стандарт определяет семь различных профилей. Под профилем понимается совокупность характеристик, обеспечиваемая для конкретной группы практических приложений стандарта. Многие из продуктов для видеонаблюдения, скорее всего, будут основаны на применении профиля "базовый" (baseline). Базовый профиль предназначается для аппаратных устройств, имеющих ограниченные вычислительные мощности, но требующих минимально возможной задержки сигнала по времени. Прочие профили предназначены для широкого спектра приложений -- от телевещания и DVD высокого разрешения (Blu-ray) до мобильной телефонии.

Чей пирог вкуснее?

Для "кулинарного конкурса" я использовал два кодера разных форматов -- H.264 и MPEG-4 -- производства компании Axis Communications, применив их к двум типичным для видеонаблюдения сценам. Первая сцена снималась на поворотную камеру, расположенную на автостоянке, а вторая -- на фиксированную камеру, закрепленную над дверью в фойе бизнес-центра. Обе сцены снимались в разрешении 4CIF с частотой 30 кадров в секунду. Для измерения битрейтов, поступающих с каждого из источников цифрового видеопотока, я пользовался программным обеспечением NetVideo Device Manager. С помощью довольно утомительной процедуры, основанной на методе проб и ошибок, я настроил степени компрессии таким образом, чтобы достичь визуально эквивалентного уровня качества видеоизображения, формируемого обоими источниками.

В обеих сценах у устройства, в котором применено сжатие по стандарту H.264, зафиксировано снижение средней плотности потока данных примерно на 50 процентов.

Измеренная задержка сигнала по времени для обоих устройств составила примерно 100 миллисекунд. В величину задержки входит время, затрачиваемое на оцифровку видеосигнала, сжатие потока данных и передачу его по сети, декодирование и вывод на экран персонального компьютера. Задержка в 100 миллисекунд -- значение весьма малое, и потому неспособное повлиять на эффективность управления поворотными устройствами камер.

Я повторил сравнительные испытания в различных сценах, и везде обнаружилась разница между отображенными сигналами, полученными с применением форматов компрессии MPEG-4 и H.264. Типичные артефакты, известные как блокинг-эффект, при относительно высоких степенях компрессии значительно заметнее на MPEG-4, чем на H.264.

По мере повышения степени сжатия сигнала видеопотоков, обрабатываемых кодерами MPEG-4 и H.264 (и соответствующего снижения битрейтов и визуального качества изображения) я отметил, что "блоки" на сигнале MPEG-4 становятся все более заметными, в то время как картинка, сжатая в формате H.264, продолжает оставаться "гладкой", избавляясь от артефактов за счет снижения детализации изображения.

То, как кодек H.264 "расправляется" с блокинг-артефактами, обусловлено такими свойствами формата, как возможность снижения размера блоков вплоть до 4х4 пиксела, а также применением деблокирующего фильтра, который сглаживает контрастные зоны между прилегающими блоками.

Деблокирование требует больших затрат вычислительных ресурсов, потому для его осуществления в кодерах видеоустройств должны применяться более мощные (и потому более дорогие!) процессоры.

Декодеры, способные расшифровать сигнал формата H.264, также должны обладать большей вычислительной мощностью. Участвовавший в нашем "конкурсе" программный декодер сигнала Н.264, реализованный на персональном компьютере, вдвое интенсивнее "грузил" центральный процессор, чем его коллега MPEG-4; это наблюдалось при съемке обеих тестовых сцен -- на парковке и в фойе. При использовании программных приложений, в которых предусмотрено одновременное отображение многочисленных сигналов с камер, это может существенно повлиять на требования к аппаратной части применяемых ПК.

Несмотря на то, что снижение битрейта при применении кодека H.264 происходит за счет повышения требований к вычислительным ресурсам, по моему убеждению, формат H.264 -- серьезный шаг в развитии систем видеонаблюдения. Эффективность внедрения стандарта H.264 может выражаться в увеличении глубины архивирования, снижении затрат на хранение видеоданных либо в улучшении качества изображения. Думаю, что формат H.264 получит повсеместное распространение в качестве стандарта компрессии видеоданных в охранной отрасли, значительно снизив эксплуатационные затраты в системах видеонаблюдения с повышенным разрешением и частотой кадров.

Добавлено: 2017-08-31 12:11:30

На сегодняшний день все современные системы видеонаблюдения так или иначе являются цифровыми, то есть в конечном виде информация всегда имеет цифровое представление. В связи с этим для более эффективного хранения и передачи по сети обязательно используется сжатие видео по определённым алгоритмам.

Основные понятия

Практически все знают, что видео представляет из себя последовательность статичных изображений, меняющихся во времени. А эти изображения состоят из массива пикселей.

Пиксель - это наименьший логический элемент изображения, который меняет свой цвет в зависимости от его содержания.

Кадр - это массив всех пикселей, которые генерируются видеокамерой в определённый момент времени. На данный момент в системах видеонаблюдения самые распространённые размеры кадров: 960x576 (WD1), 1280x720 (HD), 1920x1080 (FullHD), 2688x1520 (4Mpix) и 2560x1920 (5 Mpix).

Частота кадров – это скорость, с которой чередуются кадры на мониторе. В большинстве случаев частота 25 кадров в секунду является максимальной. На профессиональном жаргоне оборудование, способное записывать и генерировать видеопоток с частотой 25 к/с, имеет приставку RealTime (с англ. «реальное время»). При такой частоте человеческий глаз воспринимает динамическое изображение плавным и без дёрганий как в реальности.

Битрейт - это количество бит информации, используемое для хранения или передачи видео или аудио контента в единицу времени (бит/с). Битрейт также отображает степень сжатия потока данных. В системах видеонаблюдения битрейт может постоянным (СBR – Constant Bitrate) или переменным (Variable Bitrate). Постоянный битрейт соответствует заданным параметрам и остаётся неизменным на протяжении всего файла. Его главное достоинство в том, что можно предсказать размер конечного файла. При переменном битрейте кодек выбирает его значение, исходя из параметров желаемого качества. В течение всего кодируемого видеофрагмента битрейт может изменяться.

Опорные кадры (i - кадры) – кадры, которые содержат полную информацию о текущем снимке.

Предсказанные кадры (p - кадры) – кадры, содержащие информацию только о разнице между текущим и предыдущим снимком.

Все применяемые в системах видеонаблюдения алгоритмы сжатия основываются на технологиях с потерями. То есть в процессе сжатия отсекается часть избыточной информации.

Почему видео необходимо сжимать?

Для наглядности рассчитаем видеопоток без компрессии с FullHD камеры со скоростью 25 кадров в секунду. Итак, имеем кадр с разрешением 1920x1080 и суммарным количеством пикселей 2073600. Представим один пиксель в самой простой форме кодирования цвета - RGB24, где под составляющие Red, Green и Blue выделяется по 8 бит. То есть 1 пиксель будет занимать 24 бита информационного пространства. Следовательно, одному кадру c разрешением 1080p потребуется 49766400 бит или 47,5 Мбит. Таких кадров в секунду хотелось бы иметь 25. Отсюда «вытекает» битрейт без сжатия 47,5 x 25 = 1187.5 Мбит/с = 1,16 Гбит/с, то есть для хранения часового фрагмента видео с 2 Mpix IP видеокамеры потребуется 500 Гб дискового пространства, а для передачи потока пропускной способности гигабитной сети будет недостаточно.

Следует отметить, что обычно максимальный битрейт видеопотока c идентичными параметрами при сжатии кодеком H.264 обычно составляет 8 Мбит/с, что почти в 150 раз меньше, чем у несжатого видео. Из этого очевидно, что без алгоритмов сжатия системы видеонаблюдения стоили бы в десятки, а то и в сотни раз дороже того, что мы имеем сейчас.

Современные алгоритмы сжатия

Время не стоит на месте, требования к качеству картинки постоянно растут. При этом пропускная способность каналов связи и ёмкость накопителей совсем бы не поспевали за этим ростом, если бы не постоянное совершенствование алгоритмов сжатия.

Стандарт H.264

На данный момент в системах видеонаблюдения уже достаточно длительное время доминирует алгоритм сжатия H.264.

Компрессия H.264 заключается в исключении избыточных данных и сокращении их объема по многочисленным алгоритмам, подробно которые рассматривать в данной статье мы не будем.

При настройке кодирования в системах видеонаблюдения встречаются три основных профиля кодека H.264:

Baseline профиль подразумевает минимальную нагрузку на процессор декодирующего устройства при несильном сжатии. Предназначен для просмотра видеокамеры в локальной сети на компьютере.

Main профиль создаёт среднюю нагрузку на процессор при сильном сжатии. Этот профиль универсальный и подходит для производительных ПК и для большинства видеорегистраторов.

High профиль обеспечивает максимальное сжатие с сильной нагрузкой на устройство декодирования. Битрейт при работе с таким профилем будет в 2-3 раза ниже, чем при использовании baseline профиля. При использовании видеосервера на базе процессоров Intel или AMD, в отличие от видеорегистратора, нагрузка будет распределяться на работу всей системы.

Перспективный стандарт H.265

Формат сжатия H.265 High Efficiency Video Coding (HEVC) стал значительным шагом вперед в области кодирования цифрового видеосигнала, главным преимуществом которого является почти в 2 раза увеличенная эффективность по сравнению с предшествующим стандартом H.264. То есть благодаря новому алгоритму для передачи сигнала требуется вдвое меньшая пропускная способность сети, а для хранения вдвое меньшая ёмкость накопителей. Это позволяет использовать программные и аппаратные средства c гораздо меньшими затратами.

Кстати, новый стандарт поддерживает разрешения вплоть до 35 Mpix (8192 х 4320 (8K)), так как максимальный размер блока увеличен до 4096 пикселей (у H.264 – блок 256 пикселей).

Параллельное кодирование, предусмотренное стандартом H.265, даёт возможность одновременной обработки разных частей кадра, что существенно ускоряет воспроизведение и даёт возможность в полной мере использовать современные многоядерные процессоры.

Кроме этого, новый стандарт получил технологию произвольного доступа к изображению (Clean Random Access), которая позволяет произвести декодирование случайно выбранного кадра без необходимости обработки предыдущих в потоке изображений. Это особенно желательно, когда при мониторинге требуется оперативно переключиться на определённый канал.

Несмотря на все преимущества, H.265 ещё далёк от повсеместного использования. Во-первых, из-за того, что для его использования необходима обновлённая аппаратная часть, во-вторых, чтобы использовать кодек необходима покупка патента, а в-третьих, имеются некоторые расхождения между эффективностями, полученными в лабораторных и реальных условиях.

Вероятнее всего в долгосрочной перспективе H.265 всё-таки заменит H.264 в качестве главного решения для компрессии видео.

Оптимизированный формат H.264+

Алгоритм сжатия H.264+ - инновационный формат, разработанный специально для использования в системах видеонаблюдения. По сути H.264+ это модифицированный кодек H.264 (AVC), который оптимизирован под задачи видеонаблюдения с учётом всех особенностей.

На видео, полученном с охранных видеокамер, сцена всегда постоянна и практически не изменяется, представляющие интерес подвижные объекты могут отсутствовать на протяжении длительного времени, а шумы, возникающие в плохих условиях освещения, ощутимо влияют на качество изображения. В обновлённом формате все эти особенности были учтены и обрабатываются следующими технологиями, повышающими степень сжатия:

  • кодирование с предсказанием на основе модели фона;
  • шумоподавление;
  • долгосрочное управление видеопотоком.

Кодирование с предсказанием. Все современные алгоритмы сжатия сочетают внутрикадровое и межкадровое сжатие. При внутрикадровом сжатии опорные i-кадры кодируются независимо от других кадров, а предсказанные p-кадры используют i-кадры и другие p-кадры (межкадровое сжатие). При межкадровом сжатии эффективность сильно зависит от выбора опорного кадра. Так как фон в видеонаблюдении стабилен, то его лучше всего использовать в качестве опорного i-кадра, тем самым повысить эффективность сжатия неподвижных объектов и снизить поток данных, приходящийся на опорные кадры. Интеллектуальный алгоритм предсказания выбирает опорные кадры среди тех, в которых меньше всего движущихся объектов.

Шумоподавление. Обычно подвижные объекты кодируются вместе со статичным фоном для сохранения качества. Вместе с фоном кодируются и фоновые шумы. В формате H.264+ c помощью специальных алгоритмов фон отделяется от движущегося объекта и кодируется с более высокой степенью сжатия. Такая технология позволяет частично подавлять шумы и уменьшать битрейт.

Долгосрочное управление видеопотоком. При фоновом подавлении шума битрейт видео зависит от размера части фона изображения. Например, при съёмке на улице в дневное время на фон приходится очень малая часть изображения, так как в это время в кадре находится большое количество подвижных людей и автомобилей. При этом битрейт ощутимо возрастает. И наоборот, ночью битрейт уменьшается, так как движущихся объектов становится гораздо меньше. Формат H.264+ имеет алгоритмы отслеживания интенсивности видеопотоков и в зависимости от времени суток автоматически изменяет степень сжатия. Такая технология управления видеопотоком позволяет не только уменьшить объём видеоархива, но и сохранить качество изображения движущихся объектов.

Недостатки сжатия видео

При использовании алгоритмов сжатия иногда на изображении можно отчётливо наблюдать так называемые артефакты. Например, разбиение изображения на блоки 8x8 пикселей или потерю мелких деталей изображения (размытие).

Заключение

Алгоритм сжатия H.264 по-прежнему остается самым популярным стандартом для подавляющего большинства систем видеонаблюдения. На сегодняшний день он полностью выполняет свои функции. Инновационный формат H.265 пока широкого распространения не получил в силу некоторых особенностей, но имеет все шансы заменить своего предшественника. Оптимизированный алгоритм H.264+ также глобального применения не имеет, так как используется только несколькими производителями.

Как ожидается, новейший стандарт сжатия видеоизображения H.264 (известный также под названием MPEG-4 Part 10/AVC, последние буквы которого означают "передовое кодирование видеосигналов") станет в ближайшие годы самым востребованным видеостандартом.

H.264 - это открытый лицензированный стандарт с поддержкой самых эффективных на сегодняшний день технологий сжатия видеоизображения. Кодер H.264 без ущерба для качества изображения может снижать размер файла цифрового видео более чем на 80% по сравнению с форматом Motion JPEG и на 50% - по сравнению со стандартом MPEG-4 Part 2. Что означает гораздо меньшие требования к полосе пропускания для передачи и объему памяти для хранения видеофайла. Или же, с другой стороны, возможность получения гораздо лучшего качества видеоизображения при той же скорости передачи данных.

Прошедший коллективное утверждение со стороны организаций по стандартизации в области телекоммуникационных и информационных технологий, H.264, как ожидается, получит более широкое распространение по сравнению с предшествующими стандартами.

H.264 уже появился в таких новых электронных устройствах, как мобильные телефоны и цифровые видеоплееры, и сразу завоевал признание со стороны конечных пользователей. Провайдеры различных услуг, такие как онлайн-хранилища видеоматериалов и телекоммуникационные компании также начали использование H.264.

В отрасли охранного видеонаблюдения H.264, по всей вероятности, быстрее всего найдет свое применение в таких областях, которые требуют использования высокой частоты кадров и , например, для охранного наблюдения за автомагистралями, аэропортами и казино, где нормой является использование частоты 30/25 (NTSC/PAL) кадров в секунду. Наибольшая экономия будет достигнута за счет снижения требований к ширине полосы пропускания и объему свободного пространства для хранения данных.

Кроме того, ожидается, что H.264 ускорит переход на мегапиксельные камеры, поскольку высокоэффективная технология сжатия может снизить огромные размеры файлов и скорость их передачи без ущерба для качества изображения. Есть, впрочем, и сопутствующие требования. Хотя H.264 предлагает экономию расходов на ширину пропускного канала сети и объемы свободного пространства для хранения данных, этот стандарт требует наличия сетевых камер и станций наблюдения с более высокими техническими характеристиками.

Разработка стандарта H.264

H.264 является результатом совместного проекта группы экспертов по кодированию видео ITU-T и группы экспертов по вопросам кинотехники ISO/IEC (MPEG). ITU-T проводит координацию телекоммуникационных стандартов от имени Международного телекоммуникационного союза. ISO расшифровывается как Международная организация по стандартизации, а IEC - Международная электротехническая комиссия, которая осуществляет надзор за всеми электротехническими, электронными и сопутствующими им технологиями. Название H.264 используется со стороны ITU-T, в то время как ISO/IEC дали стандарту название MPEG-4 Part 10/AVC, поскольку он представляет собой новый элемент в их пакете MPEG-4. В пакет MPEG-4, к примеру, входит и MPEG-4 Part 2 - стандарт, применяемый в и сетевых камерах на базе IP-систем.

H.264, разработанный для исправления некоторых недостатков в предыдущих стандартах сжатия видеоизображений, достигает своих целей благодаря:

  • Улучшениям, позволяющим снизить скорость передачи данных в среднем на 50%, и предлагающими такое качество неподвижного видеоизображения, которое сравнимо с любым другим видеостандартом;
  • устойчивости к ошибкам, которая позволяет воспроизводить изображение несмотря на ошибки при передаче данных по различным сетям;
  • низкому уровню задержки и получению лучшего качества при более высоком уровне задержки;
  • простой структуре синтаксиса, которая упрощает внедрение стандарта;
  • декодированию на основе точного совпадения, при котором определяется точное количество числовых расчетов, производимых кодером и декодером, что позволяет избежать появления накапливающихся ошибок.

H.264 также обладает гибкостью, которая позволяет применять его для решения различных задач с самыми разными требованиями к скорости передачи данных. К примеру, в области развлекательного видео (телетрансляции, DVD, спутниковое и кабельное телевидение) H.264 способен обеспечить скорость от 1 до 10 мегабит в секунду с высоким уровнем задержки, в то время как для телекоммуникационных услуг H.264 может предложить скорость передачи данных менее 1 мегабита в секунду с низким уровнем задержки.

Как происходит сжатие видеоизображения:

Сжатие видеоизображения - это сокращение и удаление избыточных видеоданных с целью оптимизации хранения и передачи файлов цифрового видео.

В ходе этого процесса исходный видеосигнал обрабатывается с помощью алгоритма для создания сжатого файла, готового к передаче и хранению. Для воспроизведения сжатого файла применяется инверсный алгоритм, который фактически дает то же самое видеоизображение, что и оригинальный источник видеосигнала. Время, требуемое для сжатия, отправки, распаковки и отображения файла, называется задержкой. При одинаковой вычислительной мощности - чем более сложен алгоритм сжатия, тем выше задержка.

Совместная работа пары алгоритмов называется видеокодеком (кодер/декодер). Видеокодеки, применяющие разные стандарты, как правило, несовместимы друг с другом, поэтому видеоданные, сжатые с использованием одного стандарта, нельзя распаковать с применением другого стандарта. К примеру, декодер MPEG-4 Part 2 не будет работать с кодером H.264. Причиной тому является тот факт, что один алгоритм не может корректно декодировать результат, полученный с помощью работы другого алгоритма, однако есть возможность оснастить множеством разных алгоритмов программное или аппаратное обеспечение, чтобы оно могло производить сжатие разных форматов.

В различных стандартах сжатия видеоизображения применяются различные методы сокращения размера данных, и, таким образом, результаты отличаются по скорости передачи данных, качеству и уровню задержки.

Результаты сжатия могут различаться и у кодеров, использующих один и тот же стандарт, поскольку разработчик кодера волен выбирать, какие именно наборы средств, определенных стандартом, в нем задействовать. До тех пор пока результат на выходе кодера соответствует формату и декодеру стандарта, возможны различные методы его реализации. Это выгодно, поскольку различные методы реализации имеют разные цели и разный бюджет. Профессиональные программные кодеры для работы с оптическими носителями не в режиме реального времени должны иметь возможность обеспечивать лучшее кодированное видеоизображение по сравнению с аппаратными кодерами для проведения видеоконференций в режиме реального времени, встроенными в портативные устройства. Таким образом, определенный стандарт не может гарантировать определенную скорость передачи данных или ее качество. Более того, функционирование одного стандарта нельзя корректно сравнивать с другими стандартами или даже с различными методами реализации этого же стандарта без предварительного определения конкретного метода реализации.

Декодер же, в отличие от кодера, должен реализовывать в себе все необходимые элементы стандарта с тем, чтобы декодировать соответствующий поток битов. Поэтому стандарт четко указывает, как именно алгоритм распаковки должен восстанавливать каждый бит сжатого видеоизображения.

Приведенный ниже график сравнивает скорость передачи данных при одинаковом уровне качества изображения следующих видеостандартов: Motion JPEG, MPEG-4 Part 2 (без компенсации движения), MPEG-4 Part 2 (с компенсацией движения) и H.264 (базовый профиль).

Рис.1. Для выбранной последовательности видеокадров кодер H.264 генерирует до 50% меньше бит в секунду по сравнению с кодером MPEG-4 с компенсацией движения. Кодер H.264, по меньшей мере, в три раза эффективнее, чем кодер MPEG-4 без компенсации движения, и по меньшей мере в шесть раз эффективнее, чем Motion JPEG.

Профили и уровни H.264

Объединенная группа, участвующая в определении стандарта H.264, сосредоточила свое основное внимание на создании простого и ясного решения, сводящего к минимуму количество опций и параметров. Важнейшим аспектом данного стандарта, как и в случае с другими видеостандартами, является предоставление различных возможностей в рамках профилей (наборов алгоритмических параметров) и уровней (классов функционирования) для оптимальной поддержки популярных продуктов и распространенных форматов.

В H.264 заложено семь профилей, каждый из которых рассчитан на конкретную область применения. Каждый профиль определяет, какой именно набор параметров может использовать кодер, и ограничивает сложность реализации декодера.

Сетевые камеры и видеокодеры, скорее всего, будут использовать так называемый базовый профиль, рассчитанный преимущественно на применение в областях с ограниченными вычислительными мощностями. Базовый профиль наиболее подходит для применения в современных кодерах режима реального времени, встроенных в сетевое видеооборудование. Этот профиль также обеспечивает низкий уровень задержки, что является важным требованием для охранного видеонаблюдения, и также имеет особую важность для управления в режиме реального времени функциями панорамирования, наклона и масштабирования сетевых PTZ-камер.

H.264 имеет 11 уровней или степеней ограничения требований к функциональности, пропускному каналу и памяти. Каждый уровень определяет скорость передачи данных и скорость кодирования в макроблоках в секунду для разрешений в диапазоне от QCIF до HDTV и выше. Чем выше разрешение, тем выше требуемый уровень.

Использование кадров

В зависимости от профиля H.264, кодером могу использоваться различные типы кадров, а именно I-кадры, P-кадры и B-кадры.

I-кадр (или вводный кадр) - это изолированный кадр, который может декодироваться независимым образом без привязки к любым другим изображениям. Первое изображение в видеопоследовательности всегда является I-кадром. I-кадры необходимы в качестве начальных точек для новых просмотров или точек повторной синхронизации в случае нарушения переданного потока битов. I-кадры можно использовать для реализации функций перемотки вперед, назад и иных функций произвольного доступа. Кодер автоматически вставляет I-кадры через равные промежутки времени или по требованию в случае, когда ожидается присоединение новых клиентов к просмотру потока. Недостатком I-кадров является чрезмерное количество составляющих их бит, но, с другой стороны, они и не создают большого количества искажений.

P-кадр, который расшифровывается как промежуточный кадр предсказуемого характера, содержит ссылки для своего кодирования на части предшествующих I-кадров и/или P-кадров. P-кадры, как правило, требуют меньшее количество бит, чем I-кадры, но имеют недостаток в том плане, что они очень уязвимы по отношению к ошибкам передачи из-за своей сложной зависимости от предшествующих ссылочных P- и I-кадров.

B-кадр (или промежуточный кадр двунаправленного предсказания) - это кадр, содержащий в себе ссылки и на предыдущий, и на последующий ссылочные кадры.

Рис. 2. Типовая последовательность I-, B- и P-кадров. P-кадр может ссылаться только на предшествующий I- или P-кадр, в то время как B-кадр может ссылаться как на предшествующий, и на последующий I- или P-кадры.

Когда видеодекодер восстанавливает видеоизображение посредством покадрового декодирования потока бит, процесс декодирования всегда должен начинаться с I-кадра. При использовании P-кадров и B-кадров они должны декодироваться вместе с ссылочными кадрами.

В базовом профиле H.264 используются только I- и P-кадры. Этот профиль идеально подходит для сетевых камер и видеокодеров из-за своего низкого уровня задержки, достигаемого за счет отсутствия B-кадров.

Основные методы сокращения данных

Для сокращения количества видеоданных, как в рамках кадра с изображением, так и в рамках последовательности видеокадров, можно использовать самые разнообразные методы.
В рамках кадра изображения сокращение данных можно произвести простым удалением избыточной информации, что окажет свое влияние на разрешение изображения.


В рамках последовательности кадров сокращение видеоданных можно произвести с помощью таких методов, как кодирование по отличиям, которое используется в большинстве стандартов сжатия видеоизображения, в том числе и H.264. При кодировании по отличиям кадр сравнивается с ссылочным кадром (т.е. предыдущим I- или P-кадром) и кодируются только изменившиеся по отношению к ссылочному кадру пиксели. Таким образом сокращается количество пиксельных значений для кодирования и отправки.

Рис.3. В формате Motion JPEG три изображения в показанной выше последовательности кодируются и отправляются как отдельные уникальные изображения (I-кадры) без какой-либо зависимости друг от друга.


Рис.4. При кодировании по отличиям (применяемом в большинстве стандартов сжатия видеоизображения, в том числе и в H.264) полностью кодируется только первое изображение (I-кадр). В двух последующих изображениях (P-кадрах) ставятся ссылки на первое изображение в отношении статичных элементов (в данном случае в отношении дома) и кодируются только движущиеся элементы (в данном случае бегущий человек) с использованием вектора движения, что, таким образом, снижает объем информации для отправки и хранения.

Объем кодирования можно дополнительно снизить, если обнаружение и кодирование по отличиям базируется на блоках пикселей (макроблоках), а не на отдельных пикселях - следовательно, сравниваются более крупные участки и кодируются только блоки со значительными отличиями. Снижаются также и затраты, сопутствующие указанию меняющегося места действия.

Впрочем, кодирование по отличиям существенно не снизит объем данных, если видеоряд содержит много движущихся объектов. И здесь можно использовать такие технологии, как поблочная компенсация движения. Поблочная компенсация движения учитывает то, что многое из того, что создает новый кадр в видеопоследовательности, можно найти на предыдущих кадрах, но, возможно, в другом месте действия. Данная техника разделяет кадр на ряды макроблоков. Новый кадр (например, P-кадр) можно составить или "предсказать" поблочно посредством поиска совпадающего блока в ссылочном кадре. При обнаружении совпадения кодер просто кодирует положение найденного совпадающего блока в ссылочном кадре. Кодирование так называемого вектора движения требует меньше бит, чем кодирование фактического содержания всего блока.

Эффективность H.264 выводит технологию сжатия видеоизображения на новый уровень.

Стандарт H.264 вводит новую передовую схему внутреннего предсказания при кодировании I-кадров. Данная схема может значительно сократить размер (в битах) I-кадра при сохранении высокого качества при помощи успешного предсказания маленьких блоков пикселей в рамках макроблока внутри кадра. Это происходит посредством попытки найти совпадающие пиксели среди ранее закодированных пикселей, которые ограничивают новый пиксельный блок 4x4 для внутреннего кодирования. Путем повторного использования уже закодированных пиксельных значений можно значительно сократить размер данных в битах. Новое внутреннее предсказание - это ключевой элемент технологии H.264, уже доказавший свою высокую эффективность. Для сравнения: даже если в потоке H.264 использовать только I-кадры, размер получившегося файла будет гораздо меньшим, чем для потока Motion JPEG, в котором используются только I-кадры.

Рис.6. Иллюстрации того, как можно использовать некоторые режимы внутреннего предсказания при кодировании пикселей 4x4 в рамках одного из 16 блоков, образующих макроблок. Каждый из 16 блоков внутри макроблока может кодироваться с помощью разных режимов.

Рис.7. Помещенные выше изображения иллюстрируют эффективность схемы внутреннего предсказания H.264, при которой внутренне предсказанное изображение отправляется "бесплатно". Для создания изображения на выходе необходимо закодировать только содержимое остаточного изображения и режимы внутреннего предсказания.

В H.264 также улучшена поблочная компенсация движения, применяемая при кодировании P- и B-кадров. Кодер H.264 может выбирать для поиска совпадающих блоков (вплоть до субпиксельной точности) некоторых или многих участков внутри одного или внутри нескольких ссылочных кадров. Для улучшения поиска совпадений можно также настраивать размер и форму блоков. На участках, где внутри ссылочного кадра нельзя найти никаких совпадающих блоков, используются внутренне закодированные макроблоки. Высокая степень гибкости поблочной компенсации движения в H.264 эффективна в местах видеонаблюдения за большим количеством людей, где следует сохранять требуемое для этой области применения качество изображения. Компенсация движения является наиболее востребованным аспектом видеокодера, а различные способы и уровни, при которых возможна ее реализация посредством кодера H.264, помогают повысить эффективность сжатия видеоизображения.

Со стандартом H.264 типичные блочные объекты, заметные на видеоизображениях с высокой степенью сжатия по стандартам Motion JPEG и MPEG (в отличие от H.264), можно уменьшить благодаря встроенному деблокирующему фильтру. Этот фильтр автоматически сглаживает края блоков, создавая почти идеальное развернутое видеоизображение.

Рис.8. Блочные объекты на изображении с высокой степенью сжатия слева уменьшились при применении деблокирующего фильтра, как это видно на изображении справа.

Заключение

H.264 представляет собой огромный шаг вперед в технологии сжатия видеоизображения. Этот стандарт предлагает различные технологии, позволяющие добиться лучшей эффективности сжатия благодаря применению более точных схем внутреннего предсказания, а также большей устойчивости к ошибкам. Он открывает новые возможности для создания передовых видеокодеров, способных значительно повысить качества изображения, увеличить частоту кадров и разрешение при сохранении той же скорости передачи данных (по сравнению с предшествующими стандартами) или же, напротив, обеспечить видеоизображение того же качества при меньшей скорости передачи данных.

H.264 представляет собой первый образец совместной работы Международного телекоммуникационного союза, Международной организации по стандартизации и Международной электротехнической комиссии по типовым международным стандартам сжатия видеоизображения. Из-за своей гибкости H.264 нашел применение в таких разнообразных областях, как DVD высокой четкости (например, Blu-ray), видеотрансляция, в том числе трансляция телевидения высокой четкости, онлайн-хранилища видеоматериалов (например, YouTube), мобильная телефонная связь третьего поколения, в таких программах, как QuickTime, Flash и в операционной системе MacOS X на компьютерах Apple, а также в игровых видеоприставках, например, PlayStation 3. Благодаря поддержке во многих отраслях промышленности и разработки программных приложений, рассчитанных на удовлетворение потребительских и профессиональных потребностей, H.264, как ожидается, заменит другие, используемые на сегодняшний день, стандарты и методы сжатия.

С более широким распространением формата H.264 в сетевых камерах, видеокодерах и программном обеспечении для управления , разработчикам и интеграторам систем требуется уверенность в том, что выбранные ими продукты и поставщики поддерживают этот новый открытый стандарт. На данный момент сетевое видеооборудование, поддерживающее как H.264, так и Motion JPEG - это идеальный выбор, обеспечивающий наивысшую степень универсальности и интеграции.

Всё более популярным становится формат компрессии видеосигнала H.264. Подробную информацию о преимуществах, которые даёт его использование, вы сможете найти в статье, приведенной ниже. Напомним, что формат сжатия видео H.264 явился совместной разработкой двух международных организаций по стандартизации и ISO/IEC; этот формат также известен под названием MPEG-4 Part 10 AVC (Advanced Video Coding, продвинутая кодировка видеосигнала).

Сжимать еще сильнее

Аппетиты видеонаблюдения в отношении объемов хранения данных и пропускной способности сетей растут: никто не хочет упустить возможность воспользоваться большой частотой кадров и высоким разрешением. Отсюда и ожидания большей эффективности от методов сжатия видеосигнала. Кодер формата H.264 способен уменьшить размер файла, содержащего цифровое видео, более чем на 80% по сравнению с сигналом, сжатым по алгоритму формата Motion JPEG, при аналогичных показателях визуального качества. В сравнении с наиболее "ходовой" разновидностью формата MPEG-4 -- MPEG-4 Part 2 Simple Profile (SP) -- кодек H.264 обычно выигрывает 40-50 процентов от объема видеофайлов.

Сектор мегапиксельных камер растет, и до недавнего времени основным сдерживающим его рост фактором считались повышенные требования к объемам хранения данных, генерируемых камерами высокого разрешения. Использование кодека H.264 способно значительно ускорить процесс внедрения мегапиксельных камер.

По моему личному мнению (то есть мнению Джона Блема - прим. ред.) , формат H.264 почти окончательно вытеснит MPEG-4 (Part 2) в течение буквально нескольких лет. А поставщики решений управления видеонаблюдением примутся встраивать поддержку нового формата уже в ближайшем будущем, равно как и все ведущие производители видеокамер.

Ложка дегтя

Есть, однако, и факторы, сдерживающие восторг от новинки -- ведь, по сути, разработка находится еще в самом начале пути. Да, кодек позволяет снизить нагрузку на сети передачи данных и сэкономить на приобретении средств хранения видеоинформации. Но его использование возможно только в условиях применения высокопроизводительных камер. Новый алгоритм сжатия использует значительно более сложную математику, чем предыдущие стандарты -- скажем, процедура декодирования примерно вдвое превосходит аналогичную процедуру у MPEG-4 Part 2 SP по объемам вычислений -- соответственно этому растет и запрос к вычислительной мощности систем. При этом собственно стандартом H.264 стал относительно давно -- около пяти лет назад, и в некоторых отраслях -- исключая нашу с вами -- уже взят на вооружение. Скажем, он используется в новом поколении потребительских DVD-дисков высокого разрешения (формат Blu-ray).

Как это работает

H.264 является гибридным стандартом блочного кодирования видеоданных с использованием компенсации движения. Собственно компенсация основана на использовании векторов перемещения областей кадра для предсказания изменений в изображении. Поскольку для видеоизображений характерна высокая степень корреляции между двумя последовательными кадрами, возможно использовать это для кодирования не картинки целиком, а лишь векторов перемещения различных частей изображения; кодируется при этом предсказанная разница между текущим кадром и его областями, присутствующими на других кадрах (так называемых ссылочных) в смещенном относительно оригинального положения виде. Эта техника называется "промежуточное предсказание".

Существует два основных метода промежуточного предсказания -- основанное на одном ссылочном кадре (макроблоки типа P) и двунаправленное (макроблоки типа В), где используется комбинация двух ссылочных кадров. Чтобы обеспечить доступ к произвольным участкам видеоизображения и повысить степень защищенности от ошибок, стандартом также предусмотрено так называемое инфракодирование, при котором кодированные данные не зависят от характера и содержания каких-либо сторонних изображений, как это происходит в случае применения промежуточного предсказания.

Стандартом H.264 предусматривается разбиение изображения на макроблоки размером до 16х16 пикселов каждый. Макроблоки объединяются в группы -- одну или несколько -- обычно в порядке сканирования. Таким образом, отдельное изображение может быть закодировано как одна или несколько групп. Использование группирования макроблоков позволяет применять различные методы коррекции ошибок, различные типы кодирования макроблоков, а также такие инструменты, как раздельное кодирование полукадров (на правах групп) при чересстрочной развертке.

В цветных видеоизображениях кодирование яркостной составляющей происходит отдельно от цветовой; учитывая особенности человеческого зрения, при этом, как правило, используется поддискретизация цветового сигнала относительно яркостного. По большому счету, фундаментальных отличий нового формата от предыдущих стандартов кодирования видеосигнала (включая MPEG-4 Part 2) нет: все они так или иначе основаны на разбиении на блоки и являются гибридными.

Новые средства

Помимо улучшений, которым подверглись уже существующие средства кодирования, формат H.264 предусматривает и ряд новых инструментов. Наиболее важными из них являются встроенный адаптивный деблокирующий фильтр, позволяющий существенно снизить блокинг-искажения изображения, запись более чем двух ссылочных кадров для более точного предсказания, деление макроблоков на блоки меньшего размера (вплоть до 4х4 пиксела), предсказание в инфракодировании, а также применение целочисленного преобразования взамен применявшегося в более ранних стандартах дискретного косинусного преобразования (DCT).

В формат H.264 входит принципиальное решение сетевого интерфейса передачи видеоданных (network abstraction layer, NAL), который, будучи установлен поверх программного механизма кодирования видеосигнала (video coding layer, VCL), берет на себя функцию эффективного представления цифрового видео в формате, обеспечивающем легкую интеграцию с целым набором различных протоколов и механизмов передачи данных -- это весьма привлекательно для сетей, работающих на основе Интернет-протокола (IP).

Что в итоге?

Главный результат всех усовершенствований технологии кодирования, воплощенных в стандарте H.264, состоит в том, что новый формат действительно превосходит по своим характеристикам все предыдущие алгоритмы сжатия цифрового видеосигнала -- и потому на сегодняшний день может считаться высшим достижением в области кодирования цифрового видео.

Итак, стОит ли Н.264 всей медиа-шумихи, развернутой вокруг него? Стандарты видеокомпрессии с приходом нового формата стали стремительно меняться -- и сегодня они уже способны сохранить либо даже снизить нагрузку на пропускную способность сетей передачи данных при переходе на видео высокого разрешения. И это является весьма ценным.

Однако же, будем помнить, что все прелести новой технологии кодирования и хлынувших на рынок все более мощных мегапиксельных камер могут быть реализованы лишь при использовании крепкой управляющей платформы, на базе которой формируются решения видеонаблюдения. Применение стопроцентно открытых платформ по управлению IP-видеонаблюдением позволит вам интегрировать новые технологические решения в уже существующую у вас серверную инфраструктуру -- без необходимости полной замены аппаратной части системы.

Джон Блем, директор компании Milestone по информационным технологиям.