Снижение уровней звуковой мощности по пути распространения шума. Определение уровней звукового давления в расчетных точках Октавный уровень звуковой мощности таблица

Проникающий шум : шум, возникающий вне данного помещения и проникающий в него через ограждающие конструкции, системы вентиляции, водоснабжения и отопления.

Постоянный шум : шум, уровень звука которого изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике «медленно» шумомера по ГОСТ 17187.

Непостоянный шум : шум, уровень звука которого изменяется во времени более чем на 5 дБА при измерениях на временной характеристике «медленно» шумомера по ГОСТ 17187.

Тональный шум : шум, в спектре которого имеются слышимые дискретные тона. Тональный характер шума устанавливают измерением в третьоктавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

Импульсный шум : непостоянный шум, состоящий из одного или ряда звуковых сигналов (импульсов), уровни звука которого (которых), измеренные в дБАI и дБА соответственно на временных характеристиках «импульс» и «медленно» шумомера по ГОСТ 17187, различаются между собой на 7 дБА и более.

Уровень звукового давления : десятикратный десятичный логарифм отношения квадрата звукового давления к квадрату порогового звукового давления (Ро = 2*10 -5 Па) в дБ.

Октавный уровень звукового давления : уровень звукового давления в октавной полосе частот в дБ.

Уровень звука : уровень звукового давления шума в нормируемом диапазоне частот, корректированный по частотной характеристике А шумомера по ГОСТ 17187 в дБА.

Эквивалентный (по энергии) уровень звука : уровень звука постоянного шума, который имеет то же самое среднеквадратическое значение звукового давления, что и исследуемый непостоянный шум в течение определенного интервала времени в дБА.

Максимальный уровень звука : уровень звука непостоянного шума, соответствующий максимальному показанию измерительного, прямо-показывающего прибора (шумомера) при визуальном отсчете, или уровень звука, превышаемый в течение 1% длительности измерительного интервала при регистрации шума автоматическим оценивающим устройством (статистическим анализатором).

Изоляция ударного шума перекрытием : величина, характеризующая снижение ударного шума перекрытием.

Изоляция воздушного шума (звукоизоляция) R : способность ограждающей конструкции уменьшать проходящий через нее звук. В общем виде представляет собой десятикратный десятичный логарифм отношения падающей на ограждение звуковой энергии к энергии, проходящей через ограждение. В настоящем документе под звукоизоляцией воздушного шума подразумевается обеспечиваемое разделяющим два помещения
ограждением снижение уровней звукового давления в дБ, приведенное к условиям равенства площади ограждающей конструкции и эквивалентной площади звукопоглощения в защищаемом помещении
R = L1-L2 + 10lg(S/A),

где L1 - уровень звукового давления в помещении с источником звука, дБ; L2 - уровень звукового давления в защищаемом помещении, дБ; S - площадь ограждающей конструкции, м2; А - эквивалентная площадь звукопоглощения в защищаемом помещении, м2.

Приведенный уровень ударного шума под перекрытием Ln : величина, характеризующая изоляцию ударного шума перекрытием (представляет собой уровень звукового давления в помещении под перекрытием при работе на перекрытии стандартной ударной машины), условно приведенная к величине эквивалентной площади звукопоглощения в помещении Ао = 10 м2. Стандартная ударная машина имеет пять молотков весом по 0,5 кг, падающих с высоты 4 см с частотой 10 ударов в секунду.

Частотная характеристика изоляции воздушного шума : величина изоляции воздушного шума R, дБ, в третьоктавных полосах частот в диапазоне 100-3150 Гц (в графической или табличной форме).

Частотная характеристика приведенного уровня ударного шума под перекрытием : величина приведенных уровней ударного шума под перекрытием Ln, дБ, в третьоктавных полосах частот в диапазоне 100-3150 Гц (в графической или табличной форме).

Индекс изоляции воздушного шума Rw : величина, служащая для оценки звукоизолирующей способности ограждения одним числом. Определяется путем сопоставления частотной характеристики изоляции воздушного шума со специальной оценочной кривой в дБ.

Индекс приведенного уровня ударного шума Lnw : величина, служащая для оценки изолирующей способности перекрытия относительно ударного шума одним числом. Определяется путем сопоставления частотной характеристики приведенного уровня ударного шума под перекрытием со специальной оценочной кривой в дБ.

RAтран : величина, служащая для оценки изоляции воздушного шума окном. Представляет собой изоляцию внешнего шума, создаваемого потоком городского транспорта в дБА.

Звуковая мощность : количество энергии, излучаемой источником шума в единицу времени, Вт.

Уровень звуковой мощности : десятикратный десятичный логарифм отношения звуковой мощности к пороговой звуковой мощности (wo = 10 -12 Вт).

Коэффициент звукопоглощения a: отношение величины не отраженной от поверхности звуковой энергии к величине падающей энергии.

Эквивалентная площадь поглощения (поверхности или предмета) : площадь поверхности с коэффициентом звукопоглощения а = 1 (полностью поглощающей звук), которая поглощает такое же количество звуковой энергии, как и данная поверхность или предмет.

Средний коэффициент звукопоглощения аср : отношение суммарной эквивалентной площади поглощения в помещении Асум (включая поглощение всех поверхностей, оборудования и людей) к суммарной площади всех поверхностей помещения Scyм. -> аср=Асум/Sсум

Карты шума улично-дорожной сети, железных дорог, воздушного транспорта, промышленных зон и отдельных промышленных и энергетических объектов : карты территорий с источниками шума с нанесенными линиями разных уровней звука на местности с интервалом 5 дБА.

Являются наиважнейшей составляющей систем противопожарной защиты. В процессе проектирования систем оповещения выполняется электроакустический расчет. Основанием для электроакустического расчета является свод правил, разработанный в соответствии со статьей 84 федерального закона ФЗ-123 СП 3.13130.2009 от 22 июля 2008 г. Данная статья опирается на следующие основные пункты свода правил.

  • 4.1. Звуковые сигналы СОУЭ должны обеспечивать общий уровень звука (уровень звука постоянного шума вместе со всеми сигналами, производимыми оповещателями) не менее 75 дБА на расстоянии 3 м от оповещателя, но не более 120 дБА в любой точке защищаемого помещения
  • 4.2. Звуковые сигналы СОУЭ должны обеспечивать уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума в защищаемом помещении. Измерение уровня звука должно проводиться на расстоянии 1,5 м от уровня пола
  • 4.7. Установка громкоговорителей и других речевых оповещателей в защищаемых помещениях должна исключать концентрацию и неравномерное распределение отраженного звука
  • 4.8. Количество звуковых и речевых пожарных оповещателей, их расстановка и мощность должны обеспечивать уровень звука во всех местах постоянного или временного пребывания людей в соответствии с нормами настоящего свода правил

Смысл электроакустического расчета сводится к определению уровня звукового давления в расчетных точках – в местах постоянного или временного (вероятного) пребывания людей и сравнению данного уровня с рекомендованными (нормативными) значениями.

В озвучиваемом помещении присутствует различного рода шум. В зависимости от назначения и особенностей помещения, а также времени суток, уровень шума варьируется. Наиболее важным параметром при расчете, является величина среднестатистического шума. Шум можно измерить, но правильней и удобней взять его из готовых шум-таблиц:

Таблица 1

Для того чтобы услышать звуковую или речевую информацию, она должна быть громче шума на 3дБ, т.е. в 2 раза. Величину 2 называют запасом звукового давления. В реальных условиях шум меняется, поэтому для отчетливого восприятия полезной информации на фоне шума, запас давления д.б не менее чем в 4 раза – 6 дБ, по нормативам – 15дБ.

Удовлетворение условий изложенных в пунктах 4.6, 4.7 свода правил, достигается организационными мероприятиями – правильной расстановкой громкоговорителей, предварительным расчетом:

  • звукового давления громкоговорителя,
  • звукового давления в расчетной точке,
  • эффективной площади озвучиваемой одним громкоговорителем,
  • общего количества громкоговорителей необходимого для озвучивания определенной территории.

Критерием правильности электроакустического расчета, является выполнение следующих условий:

  1. Звуковое давление выбранного громкоговорителя д.б. "не менее 75 дБА на расстоянии 3 м от оповещателя", что соответствует величине звукового давления громкоговорителя не ниже 85дБ.
  2. Звуковое давление в расчетной точке д.б. выше уровня среднестатистического шума в помещении на 15дБ.
  3. Для потолочных громкоговорителей необходимо учитывать высоту их установки (высоту потолков).

Если все 3 условия выполнены – электроакустический расчет выполнен, если нет, то возможны следующие варианты:

  • выбрать громкоговоритель с большей чувствительностью (звуковым давлением, дБ),
  • выбрать громкоговоритель с большей мощностью (Вт),
  • увеличить количество громкоговорителей,
  • изменить схему расстановки громкоговорителей.

2. Входные параметры для расчета

Входные параметры для расчетов берутся из технического задания (ТЗ) (предоставляемого заказчиком) и технических характеристик на проектируемое оборудование. Список и количество параметров может варьироваться в зависимости от ситуации. Примерные входные данные приведены ниже.

Параметры громкоговорителей:

  • SPL
  • Pгр – мощность громкоговорителя, Вт,
  • ШДН – Ширина диаграммы направленности, град.

Параметры помещения:

  • N – Уровень шума в помещении, дБ,
  • Н – Высота потолков, м,
  • a – Длина помещения, м,
  • b – Ширина помещения, м,
  • Sп – Площадь помещения, м2.

Дополнительные данные:

  • ЗД – Запас звукового давления, дБ
  • r – Расстояние от громкоговорителя до расчетной точки.

Площадь озвучиваемого помещения:

Sп = a * b

3. Расчет звукового давления громкоговорителя

Зная номинальную мощность громкоговорителя (Рвт) и его чувствительность SPL (SPL от англ. Sound Pressure Level – уровень звукового давления громкоговорителя измеренного на мощности 1Вт, на расстоянии 1м), можно рассчитать звуковое давление громкоговорителя, развиваемое на расстоянии 1м от излучателя.

Рдб = SPL + 10lg(Pвт) (1)
  • SPL – чувствительность громкоговорителя, дБ,
  • Рвт – мощность громкоговорителя, Вт.

Второе слагаемое в (1) называется правилом "удвоения мощности" или правилом "трех децибел". Физическая интерпретация данного правила – при каждом удвоении мощности источника, уровень его звукового давления увеличивается на 3дБ. Данную зависимость можно представить таблично и графически (см. рис.1).

Рис.1. Зависимость звукового давления от мощности

4. Расчет звукового давления

Для расчета звукового давления в критической (расчетной) точке, необходимо:

  1. Выбрать расчетную точку
  2. Оценить расстояние от громкоговорителя до расчетной точки
  3. Рассчитать уровень звукового давления в расчетной точке

В качестве расчетной точки выберем место возможного (вероятного) нахождения людей, наиболее критичное с точки зрения положения или удаления. Расстояние от громкоговорителя до расчетной точки (r) можно рассчитать или измерить прибором (дальномером).

Рассчитаем зависимость звукового давления от расстояния:

Р20 = 20lg(r-1) (2)
  • r – расстояние от громкоговорителя до расчетной точки, м;
  • 1

ВНИМАНИЕ: формула (2) справедлива при r > 1 .

Зависимость (2) называется правилом "обратных квадратов” или правилом “шести децибел”. Физическая интерпретация данного правила – при каждом удвоении удаления от источника, уровень звука уменьшается на 6дБ. Данную зависимость можно представить таблично и графически, рис.2:

Рис.2. Зависимость звукового давления от расстояния

Уровень звукового давления в расчетной точке:

  • N – Уровень шума в помещении, дБ (N от англ. Noise – шум),
  • ЗД – Запас звукового давления, дБ.

При ЗД=15дБ:

Р > N + 15 (5)

Если звуковое давление в расчетной точке выше уровня среднестатистического шума в помещении на 15дБ – расчет выполнен правильно.

5. Расчет эффективной дальности

Эффективная дальность звучания (L) – расстояние от источника звука (громкоговорителя) до геометрического места расположения расчетных точек, находящихся в пределах ШДН, звуковое давление в которых остается в пределах (N+15дБ). На техническом сленге - “расстояние, которое громкоговоритель пробивает”.

В англоязычной литературе эффективная дальность звучания (effective acoustical distance (EAD)) – расстояние, при котором сохраняется четкость и разборчивость речи (1).

Рассчитаем разность между звуковым давлением громкоговорителя, уровнем шума и запасом давления.

  • p – разность звукового давления громкоговорителя, уровня шума и запаса давления, дБ.
  • 1 – коэффициент учитывающий, что чувствительность громкоговорителя измеряется на 1м.

6. Расчет площади, озвучиваемой одним громкоговорителем

Основанием для оценки величины озвучиваемой площади, является следующая установка:

Расчет будем вести из следующих допущений: Диаграмму направленности (излучения) громкоговорителя, можно представить в виде конуса (звукового поля сконцентрированного в конусе) с телесным углом в вершине конуса, равным ширине диаграммы направленности.

Площадь, озвучиваемая громкоговорителем – проекция звукового поля, ограниченного углом раскрыва на плоскость, проведенную параллельно полу на высоте 1,5м. По аналогии с эффективной дальностью: Эффективная площадь, озвучиваемая громкоговорителем – площадь звуковое давление в пределах которой не превышает значение N+15дБ (ф-ла 5).

ПРИМЕЧАНИЕ: Громкоговоритель излучает во всех направлениях, но мы будем опираться на входные данные – уровни звукового давления в пределах диаграммы направленности. Правильность данного подхода подтверждается статистической теорией.

Разобьем громкоговорители на 3 класса (типа):

  1. потолочные,
  2. настенные,
  3. рупорные.

8. Расчет эффективной площади, озвучиваемой настенным громкоговорителем

9. Расчет эффективной площади озвучиваемой рупорным громкоговорителем

10. Расчет количества громкоговорителей необходимого для озвучивания определенной территории

Рассчитав эффективную площадь, озвучиваемую одним громкоговорителем, зная общие размеры озвучиваемой территории, рассчитаем общее количество громкоговорителей:

К = int(Sп / Sгр) (16)
  • Sп – озвучиваемая площадь, м2,
  • Sгр – эффективная площадь, озвучиваемая одним громкоговорителем, м2,
  • Int – результат округления до целого значения.

11. Электроакустический калькулятор

Общий полученный результат в виде блок-схемы:

Рис.6. Блок-схема электроакустического калькулятора

Пример программирования

В данном калькуляторе (написанном в программе Microsoft Excel) реализована элементарная краткая методика – алгоритм электроакустического расчета, изложенный выше. .

Рис.7. Электроакустический калькулятор в программе Microsoft Excel

На основе разработанного алгоритма расчета работает и .

ПРИЛОЖЕНИЕ 1. Список и краткие характеристики громкоговорителей ROXTON

Громкоговоритель ROXTON SPL, дБ Р вт, Вт ШДН, гр. Р дб, дБ
Потолочные громкоговорители
88 3 90 93
90 6 90 100
88 6 90 96
90 6 90 96
92 20 90 101
92 10 90 98
90 30 90 104
92 10 90 102
92 10 90 104
Настенные громкоговорители
86 2 90 91
90 6 90 96
90 6 90 100
92 10 90 106

4.1. Звуковые сигналы СОУЭ должны обеспечивать общий уровень звука (уровень звука постоянного шума вместе со всеми сигналами, производимыми оповещателями) не менее 75 дБА на расстоянии 3 м от оповещателя, но не более 120 дБА в любой точке защищаемого помещения.

4.2. Звуковые сигналы СОУЭ должны обеспечивать уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума в защищаемом помещении. Измерение уровня звука должно проводиться на расстоянии 1,5 м от уровня пола.

4.3. В спальных помещениях звуковые сигналы СОУЭ должны иметь уровень звука не менее чем на 15 дБА выше уровня звука постоянного шума в защищаемом помещении, но не менее 70 дБА. Измерения должны проводиться на уровне головы спящего человека.

4.4. Настенные звуковые и речевые оповещатели должны располагаться таким образом, чтобы их верхняя часть была на расстоянии не менее 2,3 м от уровня пола, но расстояние от потолка до верхней части оповещателя должно быть не менее 150 мм.

4.5. В защищаемых помещениях, где люди находятся в шумозащитном снаряжении, а также в защищаемых помещениях с уровнем звука шума более 95 дБА, звуковые оповещатели должны комбинироваться со световыми оповещателями. Допускается использование световых мигающих оповещателей.

4.6. Речевые оповещатели должны воспроизводить нормально слышимые частоты в диапазоне от 200 до 5000 Гц. Уровень звука информации от речевых оповещателей должен соответствовать нормам настоящего свода правил применительно к звуковым пожарным оповещателям.

4.7. Установка громкоговорителей и других речевых оповещателей в защищаемых помещениях должна исключать концентрацию и неравномерное распределение отраженного звука.

4.8. Количество звуковых и речевых пожарных оповещателей, их расстановка и мощность должны обеспечивать уровень звука во всех местах постоянного или временного пребывания людей в соответствии с нормами настоящего свода правил.

В РАСЧЕТНЫХ ТОЧКАХ

7.1. Расчетные точки в производственных и вспомогательных помещениях промышленных предприятий выбирают на рабочих местах и (или) в зонах постоянного пребывания людей на высоте 1,5 м от пола. В помещении с одним источником шума или с несколькими однотипными источниками одна расчетная точка берется на рабочем месте в зоне прямого звука источника, другая - в зоне отраженного звука на месте постоянного пребывания людей, не связанных непосредственно с работой данного источника.

В помещении с несколькими источниками шума, уровни звуковой мощности которых различаются на 10 дБ и более, расчетные точки выбирают на рабочих местах у источников с максимальными и минимальными уровнями. В помещении с групповым размещением однотипного оборудования расчетные точки выбирают на рабочем месте в центре групп с максимальными и минимальными уровнями.

7.2. Исходными данными для акустического расчета являются:

План и разрез помещения с расположением технологического и инженерного оборудования и расчетных точек;

Сведения о характеристиках ограждающих конструкций помещения (материал, толщина, плотность и др.);

Шумовые характеристики и геометрические размеры источников шума.

7.3. Шумовые характеристики технологического и инженерного оборудования в виде октавных уровней звуковой мощности , корректированных уровней звуковой мощности, а также эквивалентныхи максимальныхкорректированных уровней звуковой мощности для источников непостоянного шума должны указываться заводом-изготовителем в технической документации.

Допускается представлять шумовые характеристики в виде октавных уровней звукового давления L или уровней звука на рабочем месте (на фиксированном расстоянии) при одиночно работающем оборудовании.

7.4. Октавные уровни звукового давления L, дБ, в расчетных точках соразмерных помещений (с отношением наибольшего геометрического размера к наименьшему не более 5) при работе одного источника шума следует определять по формуле

, (1)

где - октавный уровень звуковой мощности, дБ;

Коэффициент, учитывающий влияние ближнего поля в тех случаях, когда расстояние r меньше удвоенного максимального габарита источника (r < 2) (принимают по таблице 2);

Ф - фактор направленности источника шума (для источников с равномерным излучением Ф = 1);

Пространственный угол излучения источника, рад. (принимают по таблице 3);

r - расстояние от акустического центра источника шума до расчетной точки, м (если точное положение акустического центра неизвестно, он принимается совпадающим с геометрическим центром);

k - коэффициент, учитывающий нарушение диффузности звукового поля в помещении (принимают по таблице 4 в зависимости от среднего коэффициента звукопоглощения );

В - акустическая постоянная помещения, м2, определяемая по формуле

А - эквивалентная площадь звукопоглощения, м2, определяемая по формуле

, (3)

Коэффициент звукопоглощения i-й поверхности;

Площадь i-й поверхности, м2;

Эквивалентная площадь звукопоглощения j-го штучного поглотителя, м2;

Количество j-ых штучных поглотителей, шт.;

Средний коэффициент звукопоглощения, определяемый по формуле

Суммарная площадь ограждающих поверхностей помещения, м2.

Таблица 2

┌─────────────────────┬────────────────────┬─────────────────────┐

│ r │ хи │ 10 lg хи, дБ │

│ ----- │ │ │

│ l │ │ │

│ макс │ │ │

│0,6 │3 │5 │

├─────────────────────┼────────────────────┼─────────────────────┤

│0,8 │2,5 │4 │

├─────────────────────┼────────────────────┼─────────────────────┤

│1,0 │2 │3 │

├─────────────────────┼────────────────────┼─────────────────────┤

│1,2 │1,6 │2 │

├─────────────────────┼────────────────────┼─────────────────────┤

│1,5 │1,25 │1 │

├─────────────────────┼────────────────────┼─────────────────────┤

│2 │1 │0 │

└─────────────────────┴────────────────────┴─────────────────────┘

Таблица 3

Условия излучения

Омега, рад.

10 lg Омега,дБ

В пространство - источник на колонне в помещении, на мачте, трубе

В полупространство - источник на полу, на земле, на стене

В 1/4 пространства - источник в двухгранномуглу (на полу близко от одной стены)

В 1/8 пространства - источник в трехгранномуглу (на полу близко от двух стен)

Таблица 4

┌────────────────────┬────────────────────┬──────────────────────┐

│ альфа │ k │ 10 lgk, дБ │

│ ср │ │ │

│0,2 │1,25 │1 │

├────────────────────┼────────────────────┼──────────────────────┤

│0,4 │1,6 │2 │

├────────────────────┼────────────────────┼──────────────────────┤

│0,5 │2,0 │3 │

├────────────────────┼────────────────────┼──────────────────────┤

│0,6 │2,5 │4 │

└────────────────────┴────────────────────┴──────────────────────┘

7.5. Граничный радиус , м, в помещении с одним источником шума - расстояние от акустического центра источника, на котором плотность энергии прямого звука равна плотности энергии отраженного звука, определяют по формуле

Если источник расположен на полу помещения, граничный радиус определяют по формуле

. (6)

Расчетные точки на расстоянии до 0,5можно считать находящимися в зоне действия прямого звука. В этом случае октавные уровни звукового давления следует определять по формуле

Расчетные точки на расстоянии более 2можно считать находящимися в зоне действия отраженного звука. В этом случае октавные уровни звукового давления следует определять по формуле

7.6. Октавные уровни звукового давления L, дБ, в расчетных точках соразмерного помещения с несколькими источниками шума следует определять по формуле

, (9)

где - октавный уровень звуковой мощности i-го источника, дБ;

То же, что и в формулах (1) и (6), но для i-го источника;

m - число источников шума, ближайших к расчетной точке (находящихся на расстоянии <= 5, где- расстояние от расчетной точки до акустического центра ближайшего источника шума);

n - общее число источников шума в помещении;

k и В - то же, что и в формулах (1) и (8).

Если все n источников имеют одинаковую звуковую мощность , то

. (10)

7.7. Если источник шума и расчетная точка расположены на территории, расстояние между ними больше удвоенного максимального размера источника шума и между ними нет препятствий, экранирующих шум или отражающих шум в направлении расчетной точки, то октавные уровни звукового давления L, дБ, в расчетных точках следует определять:

при точечном источнике шума (отдельная установка на территории, трансформатор и т.п.) - по формуле

при протяженном источнике ограниченного размера (стена производственного здания, цепочка шахт вентиляционных систем на крыше производственного здания, трансформаторная подстанция с большим количеством открыто расположенных трансформаторов) - по формуле

где , r, Ф,- то же, что и в формулах (1) и (7);

Затухание звука в атмосфере, дБ/км, принимаемое по таблице 5.

Таблица 5

┌──────────────────────┬────┬────┬─────┬────┬────┬─────┬────┬────┐

│ Среднегеометрические │63 │125 │250 │500 │1000│2000 │4000│8000│

│ частоты октавных │ │ │ │ │ │ │ │ │

│ полос, Гц │ │ │ │ │ │ │ │ │

├──────────────────────┼────┼────┼─────┼────┼────┼─────┼────┼────┤

│бета, дБ/км │0 │0,7 │1,5 │3 │6 │12 │24 │48 │

│ а │ │ │ │ │ │ │ │ │

└──────────────────────┴────┴────┴─────┴────┴────┴─────┴────┴────┘

При расстоянии r <= 50 м затухание звука в атмосфере не учитывают.

7.8. Октавные уровни звукового давления L, дБ, в расчетных точках в изолируемом помещении, проникающие через ограждающую конструкцию из соседнего помещения с источником (источниками) шума или с территории, следует определять по формуле

где - октавный уровень звукового давления в помещении с источником шума на расстоянии 2 м от разделяющего помещения ограждения, дБ, определяют по формулам (1), (8) или (9); при шуме, проникающем в изолируемое помещение с территории, октавный уровень звукового давленияснаружи на расстоянии 2 м от ограждающей конструкции определяют по формулам (11) или (12);

R - изоляция воздушного шума ограждающей конструкцией, через которую проникает шум, дБ;

S - площадь ограждающей конструкции, м2;

Акустическая постоянная изолируемого помещения, м2;

Если ограждающая конструкция состоит из нескольких частей с различной звукоизоляцией (например, стена с окном и дверью), R определяют по формуле

, (14)

где - площадь i-й части, м2;

Изоляция воздушного шума i-й частью, дБ.

Если ограждающая конструкция состоит из двух частей с различной звукоизоляцией (>), R определяют по формуле

. (15)

При >>при определенном соотношении площадейдопускается вместо звукоизоляции ограждающей конструкции R при расчетах по формуле (13) вводить звукоизоляцию слабой части составного огражденияи ее площадь.

Эквивалентный и максимальный уровни звука , дБА, создаваемого внешним транспортом и проникающего в помещения через наружную стену с окном (окнами), следует определять по формуле

где - эквивалентный (максимальный) уровень звука снаружи на расстоянии 2 м от ограждения, дБА;

Изоляция внешнего транспортного шума окном, дБА;

Площадь окна (окон), м2;

k - то же, что и в формуле (1).

Для помещений жилых и административных зданий, гостиниц, общежитий и др. площадью до 25 м2 , дБА, определяют по формуле

. (17)

8.16. Суммарное снижение уровней звуковой мощности в дБ по пути распространения шума следует определять последовательно для каждого элемента сети воздуховодов и затем суммировать по формуле

(65)

где - снижение октавных уровней звуковой мощности в отдельных элементах воздуховодов в дБ, определяемое по пп. 8.17 - 8.22 настоящих норм;

n c - число элементов сети воздуховодов, в которых учитывается снижение уровней звуковой мощности.

8.17. Снижение октавных уровней звуковой мощности в дБ на 1 м длины в прямых участках металлических воздуховодов прямоугольного и круглого сечений следует принимать по табл. 20.

8.18. Снижение октавных уровней звуковой мощности в дБ на прямых участках кирпичных и бетонных каналов при расчетах учитывается.

Таблица 20

Форма поперечного сечения воздуховода Гидравлический диаметр в мм Снижение уровней звуковой мощности и при среднегеометрической частоте октавных полос в Гц
Прямоугольное От 75 до 200 0,6 0,6 0,45 0,3 0,3 0,3 0,3 0,3
» 210 » 400 0,6 0,6 0,45 0,3 0,2 0,2 0,2 0,2
» 410 » 800 0,6 0,6 0,3 0,15 0,15 0,15 0,15 0,15
» 810 » 1600 0,45 0,3 0,15 0,1 0,06 0,06 0,06 0,06
Круглое От 75 до 200 0,10 0,1 0,15 0,15 0,3 0,3 0,3 0,3
» 210 » 400 0,06 0,1 0,1 0,15 0,2 0,2 0,2 0,2
» 410 » 800 0,03 0,06 0,06 0,1 0,15 0,15 0,15 0,15
» 810 » 1600 0,03 0,03 0,03 0,06 0,06 0,06 0,06 0,06

8.19. Снижение октавных уровней звуковой мощности в дБ в поворотах воздуховодов следует определить по табл. 21. При угле поворота менее или равном 45 о снижение октавных уровней звуковой мощности не учитывается.

Для плавных поворотов воздуховодов и поворотов воздуховодов под прямым углом и снабженных направляющими лопатками снижение октавных уровней звуковой мощности в дБ следует принимать по табл. 22.

Таблица 21

Ширина поворота d в мм Снижение октавных уровней звуковой мощности в дБ при среднегеометрической частоте октавных полос в Гц

Таблица 22

Ширина поворота d в мм Снижение уровней звуковой мощности в дБ при среднегеометрической частоте октавных полос в Гц
125 - 250
260 - 500
510 - 1000
1100 - 2000

8.20. Снижение октавных уровней звуковой мощности в дБ при изменении поперечного сечения воздуховода следует, в зависимости от частоты и размеров поперечного сечения воздуховодов, определять:

а) при размерах поперечного сечения воздуховода в мм, меньших указанных в табл. 23, по формуле

(66)

где т п - соотношение площадей поперечных сечений воздуховода, равное:

F 1 и F 2 - площади поперечного сечения воздуховода до и после изменения сечения в м 2 ;

б) при размерах поперечного сечения воздуховода в мм, больших указанных в табл. 23, по формулам:

(при >1) (68)

(при <1) (69)

При плавном переходе воздуховода от одного сечения к другому снижение октавных уровней звуковой мощности не учитывается.

8.21. Снижение октавных уровней звуковой мощности в дБ в разветвлении воздуховода следует определять по формуле

(70)

где т п - отношение площадей поперечных сечений воздуховодов, равное:

F - площадь поперечного сечения воздуховода перед разветвлением в м 2 ;

F отв, i - площадь поперечного сечения воздуховода отдельного ответвления в м 2 ;

Суммарная площадь поперечных сечений воздуховодов всех ответвлений в м 2 .

Таблица 23

Примечание. Если воздуховод отдельного ответвления в разветвлении повернут на 90 о, то к величине в дБ, полученной по формуле (70), следует добавлять величины снижения октавных уровней звуковой мощности, определяемых по табл. 21 или 22.

8.22. Снижение октавных уровней в звуковой мощности в дБ в результате отражения звука от открытого конца воздуховода или решетки следует определять по табл. 24.

Таблица 24

Диаметр воздуховода или корень квадратный из площади поперечного сечения конца прямоугольного воздуховода или решетки в мм Снижение октавных уровней звуковой мощности в дБ при среднегеометрической частоте октавной полосы в Гц
2500
Примечание. Данные настоящей таблицы относятся к случаю, когда воздуховод заканчивается заподлицо со стеной или потолком и расположен, как и воздухораспределительное устройство (решетка), на расстоянии двух или более диаметров воздуховода от других стен или потолка. Если воздуховод или воздухораспределительное устройство (решетка) заканчивающееся заподлицо с ограждающими конструкциями, расположены ближе к другим ограждающим конструкциям помещения, то снижение октавных уровней звуковой мощности следует определять по табл. 24, принимая значение в дБ для диаметра воздуховода, увеличенного вдвое.

Проектирование глушителей

8.23. В системах вентиляции, кондиционирования воздуха и воздушного отопления следует применять трубчатые, пластинчатые и камерные глушители (рис. 19) со звукопоглощающим материалом, а также облицовку воздуховодов и поворотов изнутри звукопоглощающими материалами.

Выбор конструкции глушителей следует производить в зависимости от размеров воздуховода, допускаемой скорости воздушного потока и требуемого снижения октавных уровней звукового давления.

Рис. 19. Схема конструкций глушителей

а - пластинчатый с крайними пластинами; б - пластинчатый без крайних пластин; в - трубчатый прямоугольного сечения; г - трубчатый круглого сечения; д - камерный; 1 - кожух глушителя; 2 - звукопоглощающая пластина; 3 - каналы для воздуха;4- звукопоглощающая облицовка;5 - внутренняя перегородка

8.24. Трубчатые глушители следует применять при размерах воздуховодов до 500 500 мм. При больших размерах воздуховодов следует применять пластинчатые или камерные глушители.

Примечание. При наличии соответствующего обоснования допустимо применение глушителей других типов. Сотовые глушители применять в системах вентиляции кондиционирования воздуха и воздушного отопления не допускается.

8.25. Пластинчатые глушители следует проектировать из звукопоглощающих пластин, устанавливаемых параллельно на некотором расстоянии друг от друга в общем кожухе.

Толщину звукопоглощающих пластин для глушителей следует принимать по табл. 25.

Таблица 25

8.26. Снижение октавных уровней звуковой мощности в дБ в воздуховодах и поворотах, облицованных изнутри звукопоглощающим материалом, и в глушителях следует определять по опытным данным.

8.27. Снижение октавных уровней звукового давления в дБ в воздухозаборных устройствах (типа камер) со звукопоглощающей облицовкой следует определять по формуле

(72)

где - - полное звукопоглощение отдельной камеры в м 2 (звукопоглощение пола не учитывается);

где Q - объемный расход воздуха через глушитель в м 3 /с;

Допустимая скорость движения воздуха в глушителе в м/с, принимаемая в зависимости от располагаемых потерь давления и уровня шумообразования в глушителе.

Для жилых и общественных зданий, вспомогательных зданий и помещений предприятий допускается принимать скорости движения воздуха в глушителях по табл. 26, если длина участка воздуховода до помещения равна не менее 5 - 8 м.

Таблица 26

8.29. При проектировании вентиляции, кондиционирования воздуха и воздушного отопления следует предусматривать установку центрального глушителя и размещать его возможно ближе к вентилятору в начале вентиляционной сети.

Для глушения шума, образующегося в воздуховодах при движении потока воздуха, атакже шума, проникающего в воздуховоды извне от других источников шума, на ответвлениях воздуховода следует предусматривать дополнительно установку глушителей шума по расчету.

8.30. В помещениях для вентиляционного оборудования следует наружный воздух глушителя и воздуховод после него, находящийся в пределах помещения для вентиляционного оборудования, звукоизолировать снаружи, чтобы октавные значения изоляции воздушного шума стенками глушителя и воздуховода были не меньше требуемой величины в дБ, определяемой по формуле

где L - октавный уровень звукового давления в помещении для вентиляционного оборудования в дБ, определяемый по формуле (6) и в соответствии с пп. 8.5 - 8.7 настоящих норм;

Площадь поверхности глушителя и воздуховода в пределах помещения для вентиляционного оборудования в м 2 ;

- октавные уровни звуковой мощности, излучаемой вентилятором в воздуховод в дБ, определяемые по формуле (57);

- суммарное снижение октавных уровней звуковой мощности, на участках воздуховода (включая глушители) от вентилятора до выхода из помещения для вентиляционного оборудования в дБ, определяемое в соответствии с пп. 8.16 и 8.26 настоящих норм.

Для уменьшения значения требуемой изоляции от воздушного шума стенок глушителя и воздуховодов можно применять звукопоглощающую облицовку внутренних поверхностей ограждающих конструкций помещения для вентиляционного оборудования.


Похожая информация.


Снизить шум в источнике его возникновения таким образом, чтобы на рабочем месте он не превышал допустимого, при современном уровне развития техники удается далеко не всегда. Поэтому приходится принимать меры для уменьшения шума на путях его распространения между источником и рабочим местом.

Зная шумовую характеристику машины или транспортного средства и произведя акустический расчет, можно найти величину октавного уровня звукового давления или эквивалентного уровня звука на рабочем месте. Если этот уровень превышает допустимый, необходимо определить требуемое снижение шума посредством мероприятий по шумоглушению. Последовательность расчета приведена ниже.

1) Расчетные точки при акустических расчетах следует выбирать внутри помещений зданий и сооружений, а также на территориях, на рабочих местах или в зоне постоянного пребывания людей на высоте 1,2-1,5 м от уровня пола, рабочей площадки или планировочной отметки территории.

При этом внутри помещения, в котором один источник шума или несколько источников шума с одинаковыми октавными уровнями звукового давления, следует выбирать не менее двух расчетных точек: одну на рабочем месте, расположенном в зоне отраженного звука, а другую – на рабочем месте в зоне прямого звука, создаваемого источниками шума.

Если в помещении несколько источников шума, отличающихся друг от друга по октавным уровням звукового давления на рабочих местах более чем на 10 дБ, то в зоне прямого звука следует выбирать две расчетные точки: на рабочих местах у источников с наибольшими и наименьшими уровнями звукового давления L в дБ.

2) Октавные уровни звукового давления L в дБ в расчетных точках на рабочих местах помещений (рис. 7.3), в которых один источник шума, следует определять:

Рис.7.3. Схема расположения расчетных точек (РТ ) и источника шума (ИШ )

РТ1 - расчетная точка в зоне прямого и отраженного звука; РТ2 - расчетная точка
в зоне прямого звука; РТ3 - расчетная точка в зоне отраженного звука



, дБ; (7.8)

б) в зоне прямого звука по формуле

, дБ; (7.9)

в) в зоне отраженного звука по формуле

где L p – октавный уровень звуковой мощности источника шума, дБ; c –коэффициент, учитывающий влияние ближнего акустического поля и принимаемый в зависимости от отношения расстояния r между акустическим центром источника и расчетной точкой к максимальным габаритным размерам l макс, принимают по табл. 7.2;

Таблица 7.2

Значения коэффициента c

r/ l макс 0,6 0,8 1,0 1,2 1,5
c 2,5 1,6 1,25

F – фактор направленности источника шума, безразмерный, определяется по опытным данным (для источников шума с равномерным излучением звука F = 1); S – площадь воображаемой поверхности правильной геометрической формы, окружающей источник и проходящей через расчетную точку, м 2 , для источников шума, у которых 2l макс < r , следует принимать при расположении источника шума:

В пространстве (на колонне в помещении) S = 4 p r 2 ;

В полупространстве – на полу, на поверхности стены, перекрытия
S = 2 p r 2 ;

В 1/4 пространства – в двухгранном углу, образованном ограждающими конструкциями (на полу близко от одной стены или на стене, близко от пола), S = p r 2 ;

В 1/8 пространства – в трехгранном углу, образованном ограждающими конструкциями (на полу близко от двух стен), S = p r 2 /2;

В – постоянная помещения, м 2 , определяемая по п. 3); y – коэффициент, учитывающий нарушение диффузности звукового поля в помещении, принимаемым по опытным данным, а при их отсутствии – по графику на рис. 7.4.

Акустический центр источника шума, расположенного на полу или стене, следует принимать совпадающим с проекцией геометрического центра источника шума на горизонтальную или вертикальную плоскость.

Рис. 7.4. График для определения коэффициента y в зависимости

от отношения постоянной помещения В к площади ограждающих

поверхностей S огр

3) Постоянную помещения В, м 2 , в октавных полосах частот следует определять по формуле

В = В 1000 m (7.11)

где В 1000 – в м 2 на среднегеометрической частоте 1000 Гц, определяемая по табл. 7.3 в зависимости объема V , м 3 и типа помещения; m– частотный множитель, определяемый по табл. 7.4.

Таблица 7.3

Постоянная помещения В 1000

Тип помещения Описание помещения Постоянная помещения В 1000 , м 2
С небольшим количеством людей (металлообрабатывающие цехи, вентиляционные камеры, генераторные, машинные залы, испытательные стенды V /20
С жесткой мебелью и большим количеством людей, или с небольшим количеством людей и мягкой мебелью (лаборатории, ткацкие и деревообрабатывающие цехи, кабинеты и т.п.). V /10
С большим количеством людей мягкой мебелью (рабочие помещения зданий управлений, залы конструкторских бюро, аудитории учебных заведений, залы ресторанов, торговые залы магазинов, залы ожидания аэропортов и вокзалов, номера гостиниц, классные помещения в школах, читальные залы библиотек, жилые помещения и т. п.). V /6
Помещения со звукопоглощающей облицовкой потолка и части стен V /1,5

Примечание к табл.7.3. Постоянную помещения В 1000 для помещений четвертого типа можно применить при определении В по формуле (7.11) только при расчете требуемой частотной характеристики изоляции воздушного шума ограждающей конструкцией и акустическом расчете вентиляционных систем. Во всех других случаях постоянную помещения В в октавных полосах следует определить с учетом наличия в помещении звукопоглощающих конструкций и экранов по СНиП II-12-77 «Защита от шума».

Таблица 7.4

Частотный множитель m

Объем помещения, V , м 3 Cреднегеометрическая частота октавной полосы, Гц
V < 200 0,8 0,75 0,7 0,8 1,4 1,8 2,5
V = 200-1000 0,65 0,62 0,64 0,75 1,5 2,4 4,2
V > 1000 0,5 0,5 0,55 0,7 1,6

4) Октавные уровни звукового давления L в дБ в расчетных точках помещений, в которых несколько источников шума, следует определять:

а) в зоне прямого и отраженного звука по формуле

, дБ, (7.12)

где L р i – октавный уровень звуковой мощности, создаваемой i -тым источником шума, дБ; , , S i – то же, что и в формулах (7.8)и (7.9), но для i -го источника шума; т – количество источников шума, ближайших к расчетной точке (т. е. источников шума, для которых r i £ 5r мин, где r мин расстояние от расчетной точки до акустического центра ближайшего к ней источника шума, м); n – общее количество источников шума в помещении; В и y то же, что и в формулах (7.8) и (7.10);

б) в зоне отраженного звука по формуле

, дБ. (7.13)

Первый член в формуле (7.13) следует определять, суммируя уровни звуковой мощности источников шума L р i по табл.7.5, а если все источники шума имеют одинаковую звуковую мощность L р 0 , то

.

Таблица 7.5

Добавка на разность двух складываемых уровней шума

5) Октавные уровни звукового давления L в дБ в расчетных точках, если источник шума и расчетные точки расположены на территории жилой застройки или на площадке предприятия, следует определить по формуле

где L р – октавный уровень звуковой мощности в дБ источника шума; Ф – то же, что в формулах (7.8) и (7.9); r – расстояние в м от источника шума до расчетной точки; b а – затухание звука в атмосфере в дБ/км, принимаемое по табл. 7.6; W – пространственный угол излучения звука, принимаемый для источников шума, расположенных:

В пространстве (на мачте, на трубе)–W = 4p;

на поверхности территории, на земле или на ограждающих конструкциях зданий и сооружений – W = 2p;

В двухгранном углу, образованном ограждающими конструкциями зданий и сооружений или ограждающими конструкциями зданий и поверхностью земли, – W = p.

Таблица 7.6

Затухание звука в атмосфере

Октавные уровни звукового давления L , дБ, допускается определять по формуле (7.14), если расчетные точки расположены на расстояниях r , больших удвоенного максимального размера источника шума. При расстояниях r £ 50 м затухание звука в атмосфере в расчетах не учитывается.

6) Октавный уровень звуковой мощности шума , дБ, прошедшего через преграду (ограждающую конструкцию помещения) (рис 7.5, а, б), следует определять по формуле

где L –октавный уровень звукового давления, дБ, у преграды, определяемый согласно указаниям примеч. 2 и 3 к настоящему пункту; S п – площадь преграды в м 2 ; DL p –снижение уровня звуковой мощности шума в дБ при прохождении звука через преграду, определяемое согласно указаниям примеч. 1 к настоящему пункту; d Д – поправка в дБ, учитывающая характер звукового поля при падении звуковых волн на преграду, определяемая согласно указаниям примеч. 2 и 3 к настоящему пункту.

Рис. 7.5. Схема размещения источников шума и расчетных точек


I II - атмосфера; III

Примечания к п. 6:

1. Если преградой является ограждающая конструкция, то DL p = R, где R – изоляция воздушного шума ограждающей конструкцией в октавной полосе частот. Расчет изоляции от воздушного шума ограждающей конструкцией подробно изложен в разделе 6 СНиП II-12-77 «Защита от шума».

2. При падении звуковых волн из помещения на преграду (рис.7.5а ) поправка d Д = 6 дБ, а L должен быть определен по формулам (7.10) или (7.13).

3. При падении звуковых волн из помещения на преграду из атмосферы (рис. 7.5б) поправка d Д = 0, а L следует определять по формулам (7.14) и (7.16).

7) Октавные уровни звуковой мощности DL p , пр –шума, дБ, прошедшего через преграду в защищаемое от шума помещение, если источники шума находятся в помещении, расположенном в другом здании (рис. 7.6), следует определять последовательно.

Рис. 7.6. Схема расположения источника шума и расчетной точки,

расположенной в защищаемом от шума помещении в другом здании

ИШ - источник шума; РТ - расчетная точка; А - промежуточная точка;
I - помещение с источниками шума; II - атмосфера; III - защищаемое от шума помещение

Сначала следует определить октавные уровни звуковой мощности шума DL p , i , дБ, прошедшего через различные преграды из помещения с источником (или несколькими источниками) шума в атмосферу, по формуле (7.15). Затем следует определить октавные уровни звукового давления шума L i , дБ, в промежуточной расчетной точке А у наружной ограждающей конструкции помещения, защищаемого от шума, по формуле (7.14), заменив в ней L на L i , а L p на L p , i . После этого следует определить суммарные октавные уровни звукового давления L сум, дБ, в точке А по формуле (7.16), а затем определить октавные уровни звуковой мощности шума, прошедшего в защищаемое от шума помещение, DL p , пр, дБ, по формуле (7.15), заменив в ней L на L сум и приняв d Д = 0.

8) Октавные уровни звукового давления в расчетной точке L пр, дБ, прошедшего через преграду, следует определять по формулам (7.10), (7.13) или (7.14), заменив в них L на L пр и L p на DL p , пр.

9) Октавные уровни звукового давления от нескольких источников шума L сум, дБ, следует определять как сумму уровней звукового давления L i , дБ, в выбранной расчетной точке от каждого источника шума (или каждой преграды, через которую проникает шум в помещение или в атмосферу) по формуле

, дБ. (7.16)

Для упрощения расчетов суммирование уровней звукового давления следует производить по табл. 7.5 аналогично суммированию уровней звуковой мощности источников шума.

10) Октавный уровень звукового давления L j , дБ, в расчетной точке для прерывистого шума от одного источника следует определять по формулам (7.8)-(7.10) или (7.14) для каждого отрезка времени τ j , мин, в течение которого значение октавного уровня звукового давления L j , дБ остается постоянным, заменив в указанных формулах L на L j .

L экв, дБ, за общее время воздействия шума Т , мин, по формуле

, дБ, (7.17)

где τ j – время, мин, в течение которого значение уровня звукового давления L j , дБ, остается постоянным; L j – постоянное значение октавного уровня звукового давления, дБ, прерывистого шума за время τ j , мин; Т – общее время воздействия шума, мин.

Примечание. За общее время воздействия шума Т , мин, следует принимать:

В производственных помещениях – продолжительность рабочей смены;

На территориях, для которых установлены уровни шума, – продолжительность дня (с 7 до 23 ч) или ночи (с 23 до 7 ч).

11) Октавный уровень звукового давления L j и, дБ, в расчетной точке для импульсного шума от одного источника следует определять по формулам (7.8)-(7.10) или (7.14) для каждого отдельного импульса продолжительностью, мин, с октавным значением звукового давления L j и, дБ, заменив в указанных формулах L на L j и .

Затем следует определить эквивалентный октавный уровень звукового давления L экв, дБ, за выбранный отрезок времени Т , мин, по формуле (7.17), заменив в ней τ j и на τ j и, а L на L j и .

12) Эквивалентные октавные уровни звукового давления L экв сум, дБ, в расчетной точке для прерывистого и импульсного шумов от нескольких источников шума следует определять в соответствии с п. 9), заменив L сум на L экв сум а L i на L экв i .

13) Определив октавные уровни звукового давления L в расчетной точке (на рабочем месте) расчетом или путем измерений, находят требуемую эффективность мероприятий по снижению шума для каждой октавной полосы

ΔL тре6 = L общ – L доп, дБ, (7.18)

где L общ – октавные уровни звукового давления от нескольких источников шума в расчетной точке (на рабочем месте), дБ; L доп – допустимый октавный уровень звука в расчетной точке (на рабочем месте), дБ, по ГОСТ 12.1.003-83 см. прил. 5.

Транспортный шум рассчитывают для эквивалентных уровней звука в децибелах А.