Как сравнивать корни с разными степенями. Квадратный корень

Корнем n-ой степени из действительного числа a именуется такое число b, для которого выполняется равенство b^n = a. Корни нечетной степени существуют для негативных и позитивных чисел, а корни четной степени – только для позитивных. Значением корня зачастую является безграничная десятичная дробь, что затрудняет его точное вычисление, следственно главно уметь сопоставлять корни.

Инструкция

1. Пускай требуется сравнить два иррациональных числа. Первое, на что следует обратить внимание – это показатели степени корней у сопоставляемых чисел. Если показатели идентичны, то сопоставляют подкоренные выражения. Видимо, что чем огромнее подкоренное число, тем огромнее значение корня при равных показателях. Скажем, пускай нужно сравнить кубический корень из 2-х и кубический корень из восьми. Показатели идентичны и равны 3, подкоренные выражения 2 и 8, причем 2 < 8. Следственно, и кубический корень из 2-х поменьше кубического корня из восьми.

2. В ином случае показатели степени могут быть различными, а подкоренные выражения идентичными. Тоже абсолютно ясно, что при извлечении корня большей степени получится меньшее число.Возьмите для примера кубический корень из восьми и корень шестой степени из восьми. Если обозначить значение первого корня как a, а второго – как b, то a^3 = 8 и b^6 = 8. Легко видеть, что a должно быть огромнее b, таким образом кубический корень из восьми огромнее корня шестой степени из восьми.

3. Больше трудной представляется обстановка с различными показателями степени корня и различными подкоренными выражениями. В таком случае нужно обнаружить наименьшее всеобщее кратное для показателей корней и построить оба выражения в степень, равную наименьшему всеобщему кратному.Пример: нужно сравнить 3^1/3 и 2^1/2 (математическая запись корней есть на рисунке). Наименьшее всеобщее кратное для 2 и 3 равно 6. Возведите оба корня в шестую степень. Здесь же получится, что 3^2 = 9 и 2^3 = 8, 9 > 8. Следственно, и 3^1/3 > 2^1/2.

Полезный совет
Дабы сравнить арифметические выражения, состоящие из нескольких корней, придется их приводить к всеобщему корню. Это дозволено сделать, пользуясь формулами сокращенного умножения, формулой Бинома Ньютона и другими приемами.

Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\) ). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\) , при возведении которого в квадрат мы получим число \(a\) : \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\) .
\(\bullet\) Чему равен \(\sqrt{25}\) ? Мы знаем, что \(5^2=25\) и \((-5)^2=25\) . Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt{25}=5\) (так как \(25=5^2\) ).
Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\) , а число \(a\) называется подкоренным выражением.
\(\bullet\) Исходя из определения, выражения \(\sqrt{-25}\) , \(\sqrt{-4}\) и т.п. не имеют смысла.

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\) : \[\begin{array}{|ll|} \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\) , то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\) , а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\) , а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\) . Дальше это выражение, к сожалению, упростить никак нельзя \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл )
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\) ; \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\) ; \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\) . \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\) . Так как \(44100:100=441\) , то \(44100=100\cdot 441\) . По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\) , то есть \(441=9\cdot 49\) .
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\) ). Так как \(5=\sqrt{25}\) , то \ Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\) ,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\) .

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\) . Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\) ). А мы знаем, что это равно четырем таким числам \(a\) , то есть \(4\sqrt2\) .

Факт 4.
\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt {} \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\) , поэтому \(\sqrt{16}=4\) . А вот извлечь корень из числа \(3\) , то есть найти \(\sqrt3\) , нельзя, потому что нет такого числа, которое в квадрате даст \(3\) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\) ), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\) ) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\) , равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\) .
\(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\) .
Пример: \(|5|=5\) ; \(\qquad |\sqrt2|=\sqrt2\) . \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\) .
Пример: \(|-5|=-(-5)=5\) ; \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\) . \(\bullet\) Имеют место следующие формулы: \[{\large{\sqrt{a^2}=|a|}}\] \[{\large{(\sqrt{a})^2=a}}, \text{ при условии } a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt{a^2}\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\) . Тогда \(\sqrt{(-1)^2}=\sqrt{1}=1\) , а вот выражение \((\sqrt {-1})^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что \(\sqrt{a^2}\) не равен \((\sqrt a)^2\) ! Пример: 1) \(\sqrt{\left(-\sqrt2\right)^2}=|-\sqrt2|=\sqrt2\) , т.к. \(-\sqrt2<0\) ;

\(\phantom{00000}\) 2) \((\sqrt{2})^2=2\) . \(\bullet\) Так как \(\sqrt{a^2}=|a|\) , то \[\sqrt{a^{2n}}=|a^n|\] (выражение \(2n\) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) \(\sqrt{4^6}=|4^3|=4^3=64\)
2) \(\sqrt{(-25)^2}=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) \(\sqrt{x^{16}}=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
\(\bullet\) Для квадратных корней верно: если \(\sqrt a<\sqrt b\) , то \(a Пример:
1) сравним \(\sqrt{50}\) и \(6\sqrt2\) . Для начала преобразуем второе выражение в \(\sqrt{36}\cdot \sqrt2=\sqrt{36\cdot 2}=\sqrt{72}\) . Таким образом, так как \(50<72\) , то и \(\sqrt{50}<\sqrt{72}\) . Следовательно, \(\sqrt{50}<6\sqrt2\) .
2) Между какими целыми числами находится \(\sqrt{50}\) ?
Так как \(\sqrt{49}=7\) , \(\sqrt{64}=8\) , а \(49<50<64\) , то \(7<\sqrt{50}<8\) , то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\) .
3) Сравним \(\sqrt 2-1\) и \(0,5\) . Предположим, что \(\sqrt2-1>0,5\) : \[\begin{aligned} &\sqrt 2-1>0,5 \ \big| +1\quad \text{(прибавим единицу к обеим частям)}\\ &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text{(возведем обе части в квадрат)}\\ &2>1,5^2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\) .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)! \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\ &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем \(\sqrt{28224}\) . Мы знаем, что \(100^2=10\,000\) , \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\) . Следовательно, \(\sqrt{28224}\) находится между \(100\) и \(200\) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\) ). Также из таблицы квадратов знаем, что \(11^2=121\) , \(12^2=144\) и т.д., тогда \(110^2=12100\) , \(120^2=14400\) , \(130^2=16900\) , \(140^2=19600\) , \(150^2=22500\) , \(160^2=25600\) , \(170^2=28900\) . Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\) . Следовательно, число \(\sqrt{28224}\) находится между \(160\) и \(170\) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\) ? Это \(2^2\) и \(8^2\) . Следовательно, \(\sqrt{28224}\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\) :
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\) .
Следовательно, \(\sqrt{28224}=168\) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, - на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

Корнем n-ой степени из действительного числа a называется такое число b, для которого выполняется равенство b^n = a. Корни нечетной степени существуют для отрицательных и положительных чисел, а корни четной степени - только для положительных. Значением корня часто является бесконечная десятичная дробь, что затрудняет его точное вычисление, поэтому важно уметь сравнивать корни.

Инструкция

Пусть требуется сравнить два иррациональных числа. Первое, на что следует обратить внимание - это показатели степени корней у сравниваемых чисел. Если показатели одинаковы, то сравнивают подкоренные выражения. Очевидно, что чем больше подкоренное число, тем больше значение корня при равных показателях. Например, пусть надо сравнить из двух и кубический корень из восьми. Показатели одинаковы и равны 3, подкоренные выражения 2 и 8, причем 2

В другом случае показатели степени могут быть разными, а подкоренные выражения одинаковыми. Тоже вполне понятно, что при извлечении корня большей степени получится меньшее число.Возьмите для примера кубический корень из восьми и корень шестой степени из восьми. Если обозначить значение первого корня как a, а второго - как b, то a^3 = 8 и b^6 = 8. Легко видеть, что a должно быть больше b, таким образом кубический корень из восьми больше корня шестой степени из восьми.

Более сложной представляется ситуация с разными показателями степени корня и разными подкоренными выражениями. В таком случае надо найти наименьшее общее кратное для показателей корней и возвести оба выражения в степень, равную наименьшему общему кратному.Пример: надо сравнить 3^1/3 и 2^1/2 (математическая запись корней есть на рисунке). Наименьшее общее кратное для 2 и 3 равно 6. Возведите оба корня в шестую степень. Тут же получится, что 3^2 = 9 и 2^3 = 8, 9 > 8. Следовательно, и 3^1/3 > 2^1/2.

Корнем n-ой степени из действительного числа a называется такое число b, для которого выполняется равенство b^n = a. Корни нечетной степени существуют для отрицательных и положительных чисел, а корни четной степени - только для положительных. Значением корня часто является бесконечная десятичная дробь, что затрудняет его точное вычисление, поэтому важно уметь сравнивать корни.

Инструкция

  • Пусть требуется сравнить два иррациональных числа. Первое, на что следует обратить внимание - это показатели степени корней у сравниваемых чисел. Если показатели одинаковы, то сравнивают подкоренные выражения. Очевидно, что чем больше подкоренное число, тем больше значение корня при равных показателях. Например, пусть надо сравнить кубический корень из двух и кубический корень из восьми. Показатели одинаковы и равны 3, подкоренные выражения 2 и 8, причем 2 < 8. Следовательно, и кубический корень из двух меньше кубического корня из восьми.
  • В другом случае показатели степени могут быть разными, а подкоренные выражения одинаковыми. Тоже вполне понятно, что при извлечении корня большей степени получится меньшее число.Возьмите для примера кубический корень из восьми и корень шестой степени из восьми. Если обозначить значение первого корня как a, а второго - как b, то a^3 = 8 и b^6 = 8. Легко видеть, что a должно быть больше b, таким образом кубический корень из восьми больше корня шестой степени из восьми.
  • Более сложной представляется ситуация с разными показателями степени корня и разными подкоренными выражениями. В таком случае надо найти наименьшее общее кратное для показателей корней и возвести оба выражения в степень, равную наименьшему общему кратному.Пример: надо сравнить 3^1/3 и 2^1/2 (математическая запись корней есть на рисунке). Наименьшее общее кратное для 2 и 3 равно 6. Возведите оба корня в шестую степень. Тут же получится, что 3^2 = 9 и 2^3 = 8, 9 > 8. Следовательно, и 3^1/3 > 2^1/2.

Начальный уровень

Сравнение чисел. Исчерпывающий гид (2019)

При решении уравнений и неравенств, а также задач с модулями требуется расположить найденные корни на числовой прямой. Как ты знаешь, найденные корни могут быть разными. Они могут быть такими: , а могут быть и вот такими: , .

Соответственно, если числа не рациональные а иррациональные (если забыл что это, ищи в теме ), или представляют собой сложные математические выражения, то расположить их на числовой прямой весьма проблематично. Тем более, что калькуляторами на экзамене пользоваться нельзя, а приближенный подсчет не дает 100% гарантий, что одно число меньше другого (вдруг разница между сравниваемыми числами?).

Конечно, ты знаешь, что положительные цифры всегда больше отрицательных, и что если мы представим числовую ось, то при сравнении, наибольшие числа будут находиться правее, чем наименьшие: ; ; и т.д.

Но всегда ли все так легко? Где на числовой оси мы отметим, .

Как их сравнить, например, с числом? Вот в этом-то и загвоздка …)

Для начала поговорим в общих чертах как и что сравнивать.

Важно: преобразования желательно делать такими, чтобы знак неравенства не менялся! То есть в ходе преобразований нежелательно домножать на отрицательное число, и нельзя возводить в квадрат, если одна из частей отрицательна.

Сравнение дробей

Итак, нам необходимо сравнить две дроби: и.

Есть несколько вариантов, как это сделать.

Вариант 1. Привести дроби к общему знаменателю.

Запишем в виде обыкновенной дроби:

- (как ты видишь, я также сократила на числитель и знаменатель).

Теперь нам необходимо сравнить дроби:

Сейчас мы можем продолжить сравнивать также двумя способами. Мы можем:

  1. просто привести все к общему знаменателю, представив обе дроби как неправильные (числитель больше знаменателя):

    Какое число больше? Правильно, то, у которого числитель больше, то есть первое.

  2. «отбросим» (считай, что мы из каждой дроби вычли единицу, и соотношение дробей друг с другом, соответственно, не изменилось) и будем сравнивать дроби:

    Приводим их также к общему знаменателю:

    Мы получили абсолютно точно такой же результат, как и в предыдущем случае - первое число больше, чем второе:

    Проверим также, правомерно ли мы вычли единицу? Посчитаем разницу в числителе при первом расчете и втором:
    1)
    2)

Итак, мы рассмотрели, как сравнивать дроби, приводя их к общему знаменателю. Перейдем к другому методу - сравнение дробей приводя их к общему… числителю.

Вариант 2. Сравнение дробей с помощью приведения к общему числителю.

Да, да. Это не опечатка. В школе редко кому рассказывают этот метод, но очень часто он весьма удобен. Чтобы ты быстро понял его суть, задам тебе только один вопрос - «в каких случаях значение дроби наибольшее?» Конечно, ты скажешь «когда числитель максимально большой, а знаменатель максимально маленький».

Например, ты же точно скажешь, что Верно? А если нам надо сравнить такие дроби: ? Думаю, ты тоже сразу верно поставишь знак, ведь в первом случае делят на частей, а во втором на целых, значит, во втором случае кусочки получаются совсем маленькие, и соответственно: . Как ты видишь, знаменатели здесь разные, а вот числители одинаковы. Однако, для того, чтобы сравнить эти две дроби, тебе не обязательно искать общий знаменатель. Хотя… найди его и посмотри, вдруг знак сравнения все же неправильный?

А знак-то тот же.

Вернемся к нашему изначальному заданию - сравнить и. Будем сравнивать и. Приведем данные дроби не к общему знаменателю, а к общему числителю. Для этого просто числитель и знаменатель первой дроби умножим на. Получим:

и. Какая дробь больше? Правильно, первая.

Вариант 3. Сравнение дробей с помощью вычитания.

Как сравнивать дроби с помощью вычитания? Да очень просто. Мы из одной дроби вычитаем другую. Если результат получается положительным, то первая дробь (уменьшаемое) больше второй (вычитаемое), а если отрицательным, то наоборот.

В нашем случае попробуем из второй вычесть первую дробь: .

Как ты уже понял, мы так же переводим в обыкновенную дробь и получаем тот же результат - . Наше выражение приобретает вид:

Далее нам все равно придется прибегнуть к приведению к общему знаменателю. Вопрос как: первым способом, преобразуя дроби в неправильные, или вторым, как бы «убирая» единицу? Кстати, это действие имеет вполне математическое обоснование. Смотри:

Мне больше нравится второй вариант, так как перемножение в числителе при приведении к общему знаменателю становится в разы проще.

Приводим к общему знаменателю:

Здесь главное не запутаться, какое число и откуда мы отнимали. Внимательно посмотреть ход решения и случайно не перепутать знаки. Мы отнимали от второго числа первое и получили отрицательный ответ, значит?.. Правильно, первое число больше второго.

Разобрался? Попробуй сравнить дроби:

Стоп, стоп. Не спеши приводить к общему знаменателю или вычитать. Посмотри: можно легко перевести в десятичную дробь. Сколько это будет? Правильно. Что в итоге больше?

Это еще один вариант - сравнение дробей путем приведения к десятичной дроби.

Вариант 4. Сравнение дробей с помощью деления.

Да, да. И так тоже можно. Логика проста: когда мы делим большее число на меньшее, в ответе у нас получается число, больше единицы, а если мы делим меньшее число на большее, то ответ приходится на промежуток от до.

Чтобы запомнить это правило, возьми для сравнения любые два простых числа, например, и. Ты же знаешь, что больше? Теперь разделим на. Наш ответ - . Соответственно, теория верна. Если мы разделим на, что мы получим - меньше единицы, что в свою очередь подтверждает, что на самом деле меньше.

Попробуем применить это правило на обыкновенных дробях. Сравним:

Разделим первую дробь на вторую:

Сократим на и на.

Полученный результат меньше, значит делимое меньше делителя, то есть:

Мы разобрали все возможные варианты сравнения дробей. Как ты видишь их 5:

  • приведение к общему знаменателю;
  • приведение к общему числителю;
  • приведение к виду десятичной дроби;
  • вычитание;
  • деление.

Готов тренироваться? Сравни дроби оптимальным способом:

Сравним ответы:

  1. (- перевести в десятичную дробь)
  2. (поделить одну дробь на другую и сократить на числитель и знаменатель)
  3. (выделить целую часть и сравнивать дроби по принципу одинакового числителя)
  4. (поделить одну дробь на другую и сократить на числитель и знаменатель).

2. Сравнение степеней

Теперь представим, что нам необходимо сравнить не просто числа, а выражения, где существует степень ().

Конечно, ты без труда поставишь знак:

Ведь если мы заменим степень умножением, мы получим:

Из этого маленького и примитивного примера вытекает правило:

Попробуй теперь сравнить следующее: . Ты так же без труда поставишь знак:

Потому что, если мы заменим возведение степень на умножение…

В общем, ты все понял, и это совсем несложно.

Сложности возникают только тогда, когда при сравнении у степеней разные и основания, и показатели. В этом случае необходимо попробовать привести к общему основанию. Например:

Разумеется, ты знаешь, что это, соответственно, выражение приобретает вид:

Раскроем скобки и сравним то, что получится:

Несколько особый случай, когда основание степени () меньше единицы.

Если, то из двух степеней и больше та, показатель которой меньше.

Попробуем доказать это правило. Пусть.

Введем некоторое натуральное число, как разницу между и.

Логично, неправда ли?

А теперь еще раз обратим внимание на условие - .

Соответственно: . Следовательно, .

Например:

Как ты понял, мы рассмотрели случай, когда основания степеней равны. Теперь посмотрим, когда основание находится в промежутке от до, но равны показатели степени. Здесь все очень просто.

Запомним, как это сравнивать на примере:

Конечно, ты быстро посчитал:

Поэтому, когда тебе будут попадаться похожие задачи для сравнения, держи в голове какой-нибудь простой аналогичный пример, который ты можешь быстро просчитать, и на основе этого примера проставляй знаки в более сложном.

Выполняя преобразования, помни, что если ты домножаешь, складываешь, вычитаешь или делишь, то все действия необходимо делать и с левой и с правой частью (если ты умножаешь на, то умножать необходимо и то, и другое).

Кроме этого, бывают случаи, когда делать какие-либо манипуляции просто невыгодно. Например, тебе нужно сравнить. В данном случае, не так сложно возвести в степень, и расставить знак исходя из этого:

Давай потренируемся. Сравни степени:

Готов сравнивать ответы? Вот что у меня получилось:

  1. - то же самое, что
  2. - то же самое, что
  3. - то же самое, что
  4. - то же самое, что

3. Сравнение чисел с корнем

Для начала вспомним, что такое корни? Вот эту запись помнишь?

Корнем степени из действительного числа называется такое число, для которого выполняется равенство.

Корни нечетной степени существуют для отрицательных и положительных чисел, а корни четной степени - только для положительных.

Значением корня часто является бесконечная десятичная дробь, что затрудняет его точное вычисление, поэтому важно уметь сравнивать корни.

Если ты подзабыл, что это такое и с чем его едят - . Если все помнишь - давай учиться поэтапно сравнивать корни.

Допустим, нам необходимо сравнить:

Чтобы сравнить эти два корня, не нужно делать никаких вычислений, просто проанализируй само понятие «корень». Понял, о чем я говорю? Да вот об этом: иначе можно записать как третья степень какого-то числа, равна подкоренному выражению.

А что больше? или? Это ты, конечно, сравнишь без всякого труда. Чем большее число мы возводим в степень, тем больше будет значение.

Итак. Выведем правило.

Если показатели степени корней одинаковы (в нашем случае это), то необходимо сравнивать подкоренные выражения (и) - чем больше подкоренное число, тем больше значение корня при равных показателях.

Сложно запомнить? Тогда просто держи в голове пример и. Что больше?

Показатели степени корней одинаковы, так как корень квадратный. Подкоренное выражение одного числа () больше другого (), значит, правило действительно верное.

А что, если подкоренные выражения одинаковые, а вот степени корней разные? Например: .

Тоже вполне понятно, что при извлечении корня большей степени получится меньшее число. Возьмем для примера:

Обозначим значение первого корня как, а второго - как, то:

Ты без труда видишь, что в данных уравнениях должно быть больше, следовательно:

Если подкоренные выражения одинаковы (в нашем случае), а показатели степени корней различны (в нашем случае это и), то необходимо сравнивать показатели степени (и) - чем больше показатель, тем меньше данное выражение .

Попробуй сравнить следующие корни:

Сравним полученные результаты?

С этим благополучно разобрались:). Возникает другой вопрос: а что если у нас все разное? И степень, и подкоренное выражение? Не все так сложно нам нужно всего- навсего… «избавиться» от корня. Да, да. Именно избавиться)

Если у нас различные и степени и подкоренные выражения, необходимо найти наименьшее общее кратное (читай раздел про ) для показателей корней и возвести оба выражения в степень, равную наименьшему общему кратному.

Что мы все на словах и на словах. Приведем пример:

  1. Смотрим показатели корней - и. Наименьшее общее кратное у них - .
  2. Возведем оба выражения в степень:
  3. Преобразуем выражение и раскроем скобки (подробнее в главе ):
  4. Посчитаем, что у нас получилось, и поставим знак:

4. Сравнение логарифмов

Вот так, медленно, но верно, мы подошли к вопросу как же сравнивать логарифмы. Если ты не помнишь что это за зверь такой, советую для начала прочитать теорию из раздела . Прочитал? Тогда ответь на несколько важных вопросов:

  1. Что называется аргументом логарифма, а что его основанием?
  2. От чего зависит, возрастает ли функция или убывает?

Если все помнишь и отлично усвоил - приступаем!

Для того, чтобы сравнивать логарифмы между собой, необходимо знать всего 3 приема:

  • приведение к одинаковому основанию;
  • приведение к одинаковому аргументу;
  • сравнение с третьим числом.

Изначально, обрати внимание на основание логарифма. Ты помнишь, что если оно меньше, то функция убывает, а если больше, то возрастает. Именно на этом будет основаны наши суждения.

Рассмотрим сравнение логарифмов, которые уже приведены к одинаковому основанию, либо аргументу.

Для начала упростим задачу: пусть в сравниваемых логарифмах равные основания . Тогда:

  1. Функция, при возрастает на промежутке от, значит по определению, то («прямое сравнение»).
  2. Пример: - основания одинаковы,соответственно сравниваем аргументы: , следовательно:
  3. Функция, при, убывает на промежутке от, значит по определению, то («обратное сравнение»). - основания одинаковы, соответственно сравниваем аргументы: , однако, знак у логарифмов будет «обратный», так как функция убывает: .

Теперь рассмотрим случаи, когда основания различны, но одинаковы аргументы.

  1. Основание больше.
    • . В этом случае используем «обратное сравнение». Например: - аргументы одинаковы, и. Сравниваем основания: однако, знак у логарифмов будет «обратный»:
  2. Основание а находится в промежутке.
    • . В этом случае используем «прямое сравнение». Например:
    • . В этом случае используем «обратное сравнение». Например:

Запишем все в общем табличном виде:

, при этом , при этом

Соответственно, как ты уже понял, при сравнении логарифмов нам необходимо привести к одинаковому основанию, либо аргументу, К одинаковому основанию мы приходим, используя формулу перехода от одного основания к другому.

Можно также сравнивать логарифмы с третьим числом и на основании этого делать вывод о том, что меньше, а что больше. Например, подумай, как сравнить вот эти два логарифма?

Небольшая подсказка - для сравнения тебе очень поможет логарифм, аргумент которого будет равен.

Подумал? Давай решать вместе.

Мы легко сравним с тобой эти два логарифма:

Не знаешь как? Смотри выше. Мы только что это разбирали. Какой знак там будет? Правильно:

Согласен?

Сравним между собой:

У тебя должно получиться следующее:

А теперь соедини все наши выводы в один. Получилось?

5. Сравнение тригонометрических выражений.

Что такое синус, косинус, тангенс, котангенс? Для чего нужна единичная окружность и как на ней найти значение тригонометрических функций? Если ты не знаешь ответы на эти вопросы, очень рекомендую тебе прочитать теорию по этой теме. А если знаешь, то сравнить тригонометрические выражения между собой для тебя не составляет труда!

Немного освежим память. Нарисуем единичную тригонометрическую окружность и вписанный в нее треугольник. Справился? Теперь отметь, по какой стороне у нас откладывается косинус, а по какой синус, используя стороны треугольника. (ты, конечно помнишь, что синус, это отношение противолежащей стороны к гипотенузе, а косинус прилежащей?). Нарисовал? Отлично! Последний штрих - проставь, где у нас будет, где и так далее. Проставил? Фух) Сравниваем, что получилось у меня и у тебя.

Фух! А теперь приступаем к сравнению!

Допустим, нам необходимо сравнить и. Нарисуй эти углы, используя подсказки в рамочках (где у нас отмечено, где), откладывая точки на единичной окружности. Справился? Вот что у меня получилось.

Теперь опустим перпендикуляр из точек, отмеченных нами на окружности на ось … Какую? Какая ось у нас показывает значение синусов? Правильно, . Вот что у тебя должно получиться:

Глядя на этот рисунок, что больше: или? Конечно, ведь точка находится выше точки.

Аналогичным образом мы сравниваем значение косинусов. Только перпендикуляр мы опускаем на ось… Верно, . Соответственно, смотрим, какая точка находится правее (ну или выше, как в случае с синусами), то значение и больше.

Наверное, ты уже догадываешься, как сравнивать тангенсы, верно? Все, что нужно, знать что такое тангенс. Так что такое тангенс?) Правильно, отношение синуса к косинусу.

Чтобы сравнить тангенсы мы так же рисуем угол, как и в предыдущем случае. Допустим, нам необходимо сравнить:

Нарисовал? Теперь так же отмечаем значения синуса на координатной оси. Отметил? А теперь укажи значения косинуса на координатной прямой. Получилось? Давай сравним:

А теперь проанализируй написанное. - мы большой отрезок делим на маленький. В ответе будет значение, которое точно больше единицы. Верно?

А при мы маленький делим на большой. В ответе будет число, которое точно меньше единицы.

Так значение какого тригонометрического выражения больше?

Правильно:

Как ты теперь понимаешь, сравнение котангенсов - то же самое, только наоборот: мы смотрим, как относятся друг к другу отрезки, определяющие косинус и синус.

Попробуй самостоятельно сравнить следующие тригонометрические выражения:

Примеры.

Ответы.

СРАВНЕНИЕ ЧИСЕЛ. СРЕДНИЙ УРОВЕНЬ.

Какое из чисел больше: или? Ответ очевиден. А теперь: или? Уже не так очевидно, правда? А так: или?

Часто нужно знать, какое из числовых выражений больше. Например, чтобы при решении неравенства расставить точки на оси в правильном порядке.

Сейчас научу тебя сравнивать такие числа.

Если надо сравнить числа и, между ними ставим знак (происходит от латинского слова Versus или сокращенно vs. - против): . Этот знак заменяет неизвестный нам знак неравенства (). Далее будем выполнять тождественные преобразования до тех пор, пока не станет ясно, какой именно знак нужно поставить между числами.

Суть сравнения чисел состоит в следующем: мы относимся к знаку так, будто это какой-то знак неравенства. И с выражением мы можем делать все то же, что делаем обычно с неравенствами:

  • прибавить любое число к обеим частям (и вычесть, конечно, тоже можем)
  • «перенести все в одну сторону», то есть вычесть из обеих частей одно из сравниваемых выражений. На месте вычитаемого выражения останется: .
  • домножать или делить на одно и то же число. Если это число отрицательное, знак неравенства меняется на противоположный: .
  • возводить обе части в одну и ту же степень. Если эта степень - четная, необходимо убедиться, что обе части имеют одинаковый знак; если обе части положительны, при возведении в степень знак не меняется, а если отрицательны, тогда меняется на противоположный.
  • извлечь корень одинаковой степени из обеих частей. Если извлекаем корень четной степени, необходимо предварительно убедиться, что оба выражения неотрицательны.
  • любые другие равносильные преобразования.

Важно: преобразования желательно делать такими, чтобы знак неравенства не менялся! То есть в ходе преобразований нежелательно домножать на отрицательное число, и нельзя возводить в квадрат, если одна из частей отрицательна.

Разберем несколько типичных ситуаций.

1. Возведение в степень.

Пример.

Что больше: или?

Решение.

Поскольку обе части неравенства положительны, можем возвести в квадрат, чтобы избавиться от корня:

Пример.

Что больше: или?

Решение.

Здесь тоже можем возвести в квадрат, но это нам поможет избавиться только от квадратного корня. Здесь надо возводить в такую степень, чтобы оба корня исчезли. Значит, показатель этой степени должен делиться и на (степень первого корня), и на. Таким числом является, значит, возводим в -ю степень:

2. Умножение на сопряженное.

Пример.

Что больше: или?

Решение.

Домножим и разделим каждую разность на сопряженную сумму:

Очевидно, что знаменатель в правой части больше знаменателя в левой. Поэтому правая дробь меньше левой:

3. Вычитание

Вспомним, что.

Пример.

Что больше: или?

Решение.

Конечно, мы могли бы возвести все в квадрат, перегруппировать, и снова возвести в квадрат. Но можно поступить хитрее:

Видно, что в левой части каждое слагаемое меньше каждого слагаемого, находящегося в правой части.

Соответственно, сумма всех слагаемых, находящихся в левой части, меньше суммы всех слагаемых, находящихся в правой части.

Но будь внимателен! У нас спрашивали что больше...

Правая часть больше.

Пример.

Сравните числа и.

Решение.

Вспоминаем формулы тригонометрии:

Проверим, в каких четвертях на тригонометрической окружности лежат точки и.

4. Деление.

Здесь тоже используем простое правило: .

При или, то есть.

При знак меняется: .

Пример.

Выполни сравнение: .

Решение.

5. Сравните числа с третьим числом

Если и, то (закон транзитивности).

Пример.

Сравните.

Решение.

Сравним числа не друг с другом, а с числом.

Очевидно, что.

С другой стороны, .

Пример.

Что больше: или?

Решение.

Оба числа больше, но меньше. Подберем такое число, чтобы оно было больше одного, но меньше другого. Например, . Проверим:

6. Что делать с логарифмами?

Ничего особенного. Как избавляться от логарифмов, подробно описано в теме . Основные правила такие:

\[{\log _a}x \vee b{\rm{ }} \Leftrightarrow {\rm{ }}\left[ {\begin{array}{*{20}{l}}{x \vee {a^b}\;{\rm{при}}\;a > 1}\\{x \wedge {a^b}\;{\rm{при}}\;0 < a < 1}\end{array}} \right.\] или \[{\log _a}x \vee {\log _a}y{\rm{ }} \Leftrightarrow {\rm{ }}\left[ {\begin{array}{*{20}{l}}{x \vee y\;{\rm{при}}\;a > 1}\\{x \wedge y\;{\rm{при}}\;0 < a < 1}\end{array}} \right.\]

Также можем добавить правило про логарифмы с разными основаниями и одинаковым аргументом:

Объяснить его можно так: чем больше основание, тем в меньшую степень его придется возвести, чтобы получить один и тот же. Если же основание меньше, то все наоборот, так как соответствующая функция монотонно убывающая.

Пример.

Сравните числа: и.

Решение.

Согласно вышеописанным правилам:

А теперь формула для продвинутых.

Правило сравнения логарифмов можно записать и короче:

Пример.

Что больше: или?

Решение.

Пример.

Сравните, какое из чисел больше: .

Решение.

СРАВНЕНИЕ ЧИСЕЛ. КОРОТКО О ГЛАВНОМ

1. Возведение в степень

Если обе части неравенства положительны, их можно возвести в квадрат, чтобы избавиться от корня

2. Умножение на сопряженное

Сопряженным называется множитель, дополняющий выражение до формулы разности квадратов: - сопряженное для и наоборот, т.к. .

3. Вычитаение

4. Деление

При или то есть

При знак меняется:

5. Сравнение с третьим числом

Если и, то

6. Сравнение логарифмов

Основные правила.