Изучение магнитного поля соленоида. Магнитное поле соленоида

Соленоид - это проволочная катушка цилиндрической формы. Его можно представить себе как множество сложенных в стопку круговых витков с током. Силовые линии магнитного поля, создаваемого электри­ческим током в соленоиде, показаны на рис. 6.6. Как видно из этого рисунка, внутри соленоида силовые линии почти прямые. Чем длин­нее соленоид, т.е. чем больше его длина по сравнению с его радиусом, тем меньше кривизна силовых линий внутри соленоида. В таком случае вектор В магнитной индукции поля внутри соленоида будет направлен параллельно его оси. Причем так, что его направление будет связано с направлением тока в соленоиде правилом правого винта. Направим ось х вдоль оси соленоида. При этом проекция вектора магнитной индукции на ось х будет равна его модулю, а все другие его проекции будут равны нулю:

B x =B, B y =B z =0.

Подставим эти проекции вектора В в уравнение (6.12). Получим

Из этого равенства вытекает, что внутри соленоида вектор магнитной индукции не только сохраняет свое направление, но его модуль здесь всюду одинаков. Таким образом, приходим к выводу, что внутри длин­ного соленоида магнитное поле является однородным.

Рис. 6.6. Магнитное поле соленоида

Найдем модуль вектора магнитной индукции поля внутри соленоида при помощи теоремы (6.8) о циркуляции этого вектора. В качестве кон­тура С, по которому будем вычислять циркуляцию вектора магнитной индукции, выберем ломанную линию, изображенную пунктиром на рис. 6.6. Отрезок этой линии длиной l находится внутри соленоида и совпа­дает с одной из силовых линий магнитного поля. Две перпендикулярные этому отрезку прямые начинаются на его концах и уходят в бесконеч­ность. Во всех точках этих прямых вектор магнитной индукции или перпендикулярен им (внутри соленоида), или равен нулю (вне соленои­да). Поэтому скалярное произведение Вdl в этих точках равно нулю. Таким образом, циркуляция магнитной индукции по рассматриваемому контуру С будет равна интегралу по отрезку силовой линии длиной l. С учетом того, что модуль вектора магнитной индукции есть постоянная величина будем иметь

Пусть число витков соленоида, охватываемых контуром С, равно N. При этом сумма токов, охватываемых контуром, будет равна NI, где I - сила тока в одном витке соленоида. Теорема (6.8) приводит к равенству

Вl = μ o NI ,

из которого найдем магнитную индукцию поля в соленоиде:

В = μ o nI

n-число витков, приходящихся на единицу длины соленоида.

Магнитное поле прямого тока

Рассмотрим магнитное поле, создаваемое электрическим током, теку­щим по тонкому бесконечно длинному проводу. Такая система обладает цилиндрической симметрией. Вследствие этого магнитное поле должно обладать следующими свойствами:

1) на любой прямой, параллельной проводу с током, вектор магнитной индукции должен быть всюду оди­наков;

2) при повороте всего магнитного поля целиком вокруг провода оно не изменяется. В таком случае силовыми линиями магнитного поля должны быть окружности, центры которых лежат на оси провода с то­ком (рис, 6.7), а вектор В на любой из этих окружностей всюду имеет один и тот же модуль.

При помощи теоремы (6.8) о циркуляции вектора магнитной индук­ции найдем модуль этого вектора. С этой целью вычислим циркуляцию магнитной индукции по одной из силовых линий С, радиус которой ра­вен а. Так как вектор В является касательным к силовой линии, он коллинеарен векторному элементу dl этой линии. Поэтому

где В - модуль вектора магнитной индукции, который, как было сказано, всюду на окружности С один и тот же. Вынесем В за знак интеграла. После интегрирования будем иметь

= В 2p a

Рис. 6.7. Силовые линии магнитного поля прямого токи

Так как контур С охватывает всего один провод с током I, теорема (6.8) приводит к равенству

2p a В = μ o I

Отсюда найдем, что на расстоянии а от бесконечного прямого провода с током I индукция создаваемого им магнитного поля будет

В = μ o I/ (2p a) (6.15)

Как видно из рис. 6.7, направление вектора В и направление тока I связаны правилом правого винта. В том, что это действительно так, нетрудно убедиться при помощи закона Био - Савара - Лапласа.

Взаимодействие токов

Рассмотрим два тонких параллельных друг другу прямых провода с токами I 1 и I 2 (рис. 6.8.). Если расстояние R между проводами много меньше их длины, то магнитную индукцию поля, создаваемого первым проводом на этом расстоянии, можно найти по формуле (6.15):

В = μ o I 1 / (2p R)

Направление вектора В 1 связано с направлением тока I 1 правилом пра­вого винта. Этот вектор изображен на рис. 6.8.

Рис. 6.8. Взаимодействие токов

Магнитное поле, создаваемое первым током, будет действовать на вто­рой провод с силой Ампера F 21 , которая определяется формулой (5.8):

(6.17)

F 21 = I 2 [l 2 B 1 ]

где l 2 - вектор, длина которого равна длина l рассматриваемого участка второго провода. Этот вектор направлен вдоль провода по направлению тока. Модуль силы (6.17) будет

F 21 = I 2 l B 1 . (6.18)

Подставив выражение (6.16) в формулу (6.18), получим следующее выра­жение для силы, с которой первый провод действует на участок второго провода длины l:

F 21 = μ o I 1 I 2 l / (2p R)

Направление силы F 21 найдем по формуле (6.17). Когда токи I 1 , I 2 текут в одном направлении эта сила будет направлена в сторону первого провода. Сила F 12 , с которой второй провод действует на участок первого провода длины l, равна по модулю и противоположна по направлению силе F 21 .

Итак, установлено, что параллельные провода с токами, текущими в одном направлении, притягиваются. Нетрудно доказать, что провода с токами, текущими в противоположных направлениях, отталкиваются друг от друга.

При помощи формулы (6.19) определена единица силы тока в СИ. Как известно, эта единица называется ампер. По определению два длинных тонких провода с токами силой в один ампер, расположенные парал­лельно на расстоянии 1 м один от другого, взаимодействуют с силой 2 10 -7 Н на 1 м длины. Подставив эти значения в формулу (6.19), найдем, что магнитная постоянная

m 0 = 4p 10 -7 Н/м.

Единица заряда в СИ - кулон - выражается через единицу силы тока: Кл = А*с. Измерения силы взаимодействия двух точечных зарядов в 1 Кл привели к значению F = 9 10 9 Н при расстоянии между зарядами R = 1 м. Используя эти значения, найдем электрическую постоянную e 0 из закона Кулона

F =| Q 1 Q 2 | /(4pe 0 R 2 )

Интересно отметить, что величина

1/Öe 0 m 0 =3 10 8 м/с

численно равна скорости света в пустоте.

Соленоидом называется совокупность N одинаковых витков изолированного проводящего провода, равномерно намотанных на общий каркас или сердечник. По виткам проходит одинаковый ток. Магнитные поля, созданные каждым витком в отдельности, складываются по принципу суперпозиции. Индукция магнитного поля внутри соленоида велика, а вне его - мала. Для бесконечно длинного соленоида индукция магнитного поля вне соленоида стремится к нулю. Если длина соленоида во много раз больше диаметра его витков, то соленоид можно практически считать бесконечно длинным . Магнитное поле такого соленоида целиком сосредоточено внутри него и является однородным (рис.6).

Величину индукции магнитного поля внутри бесконечно длинного соленоида можно определить, используя теорему о циркуляции вектора :циркуляция вектора по произвольному замкнутому контуру равна алгебраической сумме токов, охватываемых контуром, умноженной на магнитную постоянную μ о :

, (20)

где μ 0 = 4π 10 -7 Гн/м.

Рис.6. Магнитное поле соленоида

Для определения величины магнитной индукции В внутри соленоида выберем замкнутый контур ABCD прямоугольной формы, где - элемент длины контура, задающий направление обхода (рис.6). При этом длиныAB и CD будем считать бесконечно малыми.

Тогда циркуляция вектора по замкнутому контуруABCD, охватывающему N витков, равна:

На участках AB и CD произведение
, так как вектораивзаимно перпендикулярны. Поэтому

. (22)

На участке DA вне соленоида интеграл
, так как магнитное поле вне контура равно нулю.

Тогда формула (21) примет вид:

, (23)

где l – длина участка BC. Сумма токов, охватываемых контуром, равна

, (24)

где I c – сила тока соленоида; N – число витков, охватываемых контуром ABCD.

Подставив (23) и (24) в (20), получим:

. (25)

Из (25) получим выражение для индукции магнитного поля бесконечно длинного соленоида:

. (26)

Так как число витков на единицу длину соленоида n равно:

(27)

то окончательно получим:

. (28)

Если внутрь соленоида помещен сердечник, то формула (28) для В примет вид:

. (29),

где  - магнитная проницаемость материала сердечника.

Таким образом, индукция В магнитного поля соленоида определяется током соленоида I c , числом витком n на единицу длины соленоида и магнитной проницаемостью материала сердечника.

Цилиндрический магнетрон

Магнетроном называется двухэлектродная электронная лампа (диод), содержащая накаливаемый катод и холодный анод и помещенная во внешнее магнитное поле.

Анод диода имеет форму цилиндра радиусом . Катод представляет собой полый цилиндр радиусом, вдоль оси которого расположена нить накала, как правило, изготавливаемая из вольфрама (рис.7).

Раскалённый катод в результате явления термоэлектронной эмиссии испускает термоэлектроны, которые образуют вокруг катода электронное облако. При подаче анодного напряжения
(рис.8), электроны начинают перемещаться от катода к аноду вдоль радиусов, что приводит к возникновению анодного тока. Анодный ток регистрируется миллиамперметром.

Рис.7. Схема диода

Рис.8. Электрическая схема цепи

Величина анодного напряжения регулируется потенциометром R A . Чем больше анодное напряжение, тем большее количество электронов за единицу времени достигает анода, следовательно, тем больше анодный ток.

Напряжённость электрического поля Е между катодом и анодом такая же, как и в цилиндрическом конденсаторе:

, (30)

где r – расстояние от оси катода до данной точки пространства между катодом и анодом.

Из формулы (30) следует, что напряжённость поля Е обратно пропорциональна расстоянию r до оси катода. Следовательно, напряженность поля максимальна у катода.

r к <

то значение логарифма ln стремится к большой величине. Тогда с увеличением расстояния r напряженность электрического поля между катодом и анодом снижается до нуля. Поэтому, можно считать, что электроны приобретают скорость под действием поля только вблизи катода, и дальнейшее их движение к аноду происходит с постоянной по величине скоростью.

Внешнее магнитное поле, в которое помещён диод, создаётся соленоидом (рис.8). Длина соленоида l много больше диаметра его витков, поэтому поле внутри соленоида можно считать однородным. Ток в цепи соленоида изменяется с помощью потенциометра R C (рис.8) и регистрируется амперметром.

Характер движения электронов в зависимости от величины поля соленоида показан на рис.9. Если ток в цепи соленоида отсутствует, то индукция магнитного поля В = 0. Тогда электроны движутся от катода к аноду практически по радиусам.

Увеличение тока в цепи соленоида приводит к возрастанию величины В. При этом, траектории движения электронов начинают искривляться, однако все электроны достигают анода. В анодной цепи будет течь ток такой же, как и в отсутствии магнитного поля.

Рис.9. Зависимость анодного тока I A от величины тока соленоида I c в идеальном (1) и реальном (2) случаях, а также характер движения электронов в зависимости от величины поля соленоида.

При некотором значении тока в соленоиде радиус окружности, по которой движется электрон, становится равным половине расстояния между катодом и анодом:

.. (32)

Электроны в этом случае касаются анода и уходят к катоду (рис.9). Такой режим работы диода называется критическим . При этом по соленоиду течёт критический ток I кр, которому соответствует критическое значение индукции магнитного поля В = В кр.

При В = В кр анодный ток в идеальном случае должен скачком уменьшиться до нуля. При В > В кр электроны не попадают на анод (рис.9), и анодный ток также будет равен нулю (рис.9, кривая 1).

Однако на практике, вследствие некоторого разброса скоростей электронов и нарушения соосности катода и соленоида, анодный ток уменьшается не скачком, а плавно (рис.9, кривая 2). При этом значение силы тока соленоида, соответствующее точке перегиба на кривой 2, считается критическим I кр. Критическому значению тока соленоида соответствует анодный ток, равный:

, (33)

где
– максимальное значение анодного тока при В = 0.

Зависимость анодного тока I A от величины индукции магнитного поля В (или от тока в соленоиде) при постоянном анодном напряжении и постоянном накале называется сбросовой характеристикой магнетрона.

Найдем индукцию магнитного поля внутри соленоида – катушки, диаметр которой значительно больше ее длины l . Будем считать поле внутри катушки однородным, а вдали от катушки – пренебрежимо малым. Выберем контур обхода L в видепрямоугольника 1-2-3-4 (см. рис.). Найдем сначала циркуляцию вектора В. Запишем интеграл циркуляции в выражение . Разобьем интеграл по контуру L на четыре интеграла: 1-2, 2-3, 3-4, 4-1.

Контур 12341 охватывает N витков катушки в каждом из которых ток I . Таким образом, из теоремы следует, что B×l = m o NI . Отсюда найдем В .

Тема 9. Вопрос 8.

Поток вектора магнитной индукции (магнитный поток)

Представим себе некоторую замкнутую поверхность в магнитном поле. Линии магнитной индукции всегда замкнуты, они не имеют начала и конца, Поэтому количество входящих в поверхность линий будет равно количеству выходящих из нее линий. Магнитный поток пропорционален количеству линий индукции, следовательно, поток будет равен нулю. Равенство нулю магнитного потока через любую замкнутую поверхность свидетельствует о том, что магнитное поле не имеет источников этого поля (магнитных зарядов не существует). Таким образом, магнитное поле является вихревым , т.е. не имеющим источников его образования.

Тема 10. Вопрос 1.

Тема 10. Вопрос 2.

Магнитные силы.

Используя выражение для силы Ампера, найдем силу взаимодействия двух бесконечно длинных прямых проводников с токами I 1 и I 2 .

Мы рассматривали действие проводника с током I 1 на проводник с током I 2 . В соответствии с III законом Ньютона второй проводник действует на первый с такой же силой.

Тема 10. Вопрос 3.

Получение выражения для вращающего момента, действующего на контур с током в магнитном поле.

Учитывая векторный характер этих величин, можно записать общее выражение:

Тема 10. Вопрос 4.

Контур с током в магнитном поле.

Однородное поле.

Таким образом, во внешнемоднородном магнитном поле под действием магнитных сил:

1)свободно ориентированный контур с током будет поворачиваться до тех пор, пока плоскость контура не окажется перпендикулярной линиям индукции, т.е. пока магнитный момент не станет параллельным линиям индукции и

2)на контур будут действовать растягивающие силы.

Неоднородное поле.

В неоднородном магнитном поле кроме указанных выше сил, которые поворачивают и растягивают контур, появляется составляющая сил, которая стремится переместить контур. Если контур оказался ориентированным своим магнитным моментом по полю (как на рисунке), то составляющая силы F 1 будет растягивать контур, а составляющая F 2 будет втягивать контур в область более сильного поля. Если контур окажется в поле таким образом, что его магнитный момент будет направлен против поля, это положение контура будет неустойчивым. Контур развернется по полю, и будет втягиваться в область более сильного поля.

Приведем выражение для силы, действующей на контур с током в неоднородном магнитном поле, индукция которого изменяется только по одной координате х .

Тема 10. Вопрос 5.

Рассчитаем, применяя теорему о циркуляции, индукцию магнитного поля внутри соленоида. Рассмотрим соленоид длиной l , имеющий N витков, по которому течет ток (рис. 175). Длину соленоида считаем во много раз больше, чем диаметр его витков, т. е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида (см. рис. 162, б) показывает, что внутри соленоида поле является однородным, вне соленоида - неоднородным и очень слабым.

На рис. 175 представлены линии магнитной индукции внутри и вне соленоида. Чем соленоид длиннее,тем меньше магнитная индукция вне его. Поэтому приближенно можно считать, что поле бесконечно длинного соленоида сосредоточено целиком внутри него, а полем вне соленоида можно пренебречь.

Для нахождения магнитной индукции В выберем замкнутый прямоугольный кон­тур ABCDA , как показано на рис. 175. Циркуляция вектора В по замкнутому контуру ABCDA , охватывающему все N витков, согласно (118.1), равна

Интеграл по ABCDA можно представить в виде четырех интегралов: по АВ, ВС, CD и DA . На участках АВ и CD контур перпендикулярен линиям магнитной индукции и B l = 0. На участке вне соленоида B =0. На участке DA циркуляция вектора В равна Вl (контур совпадает с линией магнитной индукции); следовательно,

(119.1)

Из (119.1) приходим к выражению для магнитной индукции поля внутри соленоида (в вакууме):

Получили, что поле внутри соленоида однородно (краевыми эффектами в областях, прилегающих к торцам соленоида, при расчетах пренебрегают). Однако отметим, что вывод этой формулы не совсем корректен (линии магнитной индукции замкнуты, и интеграл по внешнему участку магнитного поля строго нулю не равен). Корректно рассчитать поле внутри соленоида можно, применяя закон Био - Савара - Лапласа; в результате получается та же формула (119.2).

Важное значение для практики имеет также магнитное поле тороида - кольцевой катушки, витки которой намотаны на сердечник, имеющий форму тора (рис. 176). Магнитное поле, как показывает опыт, сосредоточено внутри тороида, вне его поле отсутствует.

Линии магнитной индукции в данном случае, как следует из соображений симмет­рии, есть окружности, центры которых расположены по оси тороида. В качестве контура выберем одну такую окружность радиуса r . Тогда, по теореме о циркуляции (118.1), B × 2p r =m 0 NI , откуда следует, что магнитная индукция внутри тороида (в вакууме)

где N - число витков тороида.

Если контур проходит вне тороида, то токов он не охватывает и B × 2p r = 0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).

Соленоидом называется проводник, свитый спиралью, по которому пропущен электрический ток (рисунок 1, а ).

Если мысленно разрезать витки соленоида поперек, обозначить направление тока в них, как было указано выше, и определить направление магнитных индукционных линий по "правилу буравчика", то магнитное поле всего соленоида будет иметь такой вид, как показано на рисунке 1, б .

Рисунок 1. Соленоид (а ) и его магнитное поле (б )

Рисунок 2. Компьютерная модель соленоида

На оси бесконечно длинного соленоида, на каждой единице длины которого намотано n 0 витков, напряженность магнитного поля внутри соленоида определяется формулой:

H = I × n 0 .

В том месте, где магнитные линии входят в соленоид, образуется южный полюс, где они выходят - северный полюс.

Для определения полюсов соленоида пользуются "правилом буравчика", применяя его следующим образом: если расположить буравчик вдоль оси соленоида и вращать его по направлению тока в витках катушки соленоида, то поступательное движение буравчика покажет направление магнитного поля (рисунок 3).

Видео про соленоид:

Электромагнит

Соленоид, внутри которого находится стальной (железный) сердечник, называется электромагнитом (рисунок 4 и 5). Магнитное поле у электромагнита сильнее, чем у соленоида, так как кусок стали, вложенный в соленоид, намагничивается и результирующее магнитное поле усиливается. Полюсы у электромагнита можно определить, так же как и у соленоида, по "правилу буравчика".


Рисунок 5. Катушка электромагнита

Электромагниты широко применяются в технике. Они служат для создания магнитного поля в электрических генераторах и двигателях, в электроизмерительных приборах, электрических аппаратах и тому подобном.

В установках большой мощности для отключения поврежденного участка цепи вместо плавких предохранителей применяются автоматические, масляные и воздушные выключатели. Для приведения в действие отключающих катушек автоматических выключателей применяются различные реле. Реле называются приборы или автоматы, реагирующие на изменение тока, напряжения, мощности, частоты и прочих параметров.

Из большого числа реле, различных по своему назначению, принципу действия и конструкции, кратко рассмотрим устройство электромагнитных реле. На рисунке 6 представлены конструкции этих реле. Работа реле основана на взаимодействии магнитного поля, создаваемого неподвижной катушкой, по которой проходит ток, и стального подвижного якоря электромагнита. При изменении условий работы в цепи главного тока катушка реле возбуждается, магнитный поток сердечника подтягивает (поворачивает или втягивает) якорь, который замыкает контакты цепи, отключающей катушки привода масляных и воздушных выключателей или вспомогательных реле.


Рисунок 6. Электромагнитное реле

Реле нашли себе применение также в автоматике и телемеханике.

Магнитный поток соленоида (электромагнита) увеличивается с увеличением числа витков и тока в нем. Намагничивающая сила зависит от произведения тока на число витков (числа ампер-витков).

Если, например, взять соленоид, по обмотке которого проходит ток 5 А и число витков которого равно 150, то число ампер-витков будет 5 × 150 = 750. Тот же магнитный поток получится если взять 1500 витков и пропустить по ним ток 0,5 А, так как 0,5 × 1500 = 750 ампер-витков.

Увеличить магнитный поток соленоида можно следующими путями: 1) вложить в соленоид стальной сердечник, превратив его в электромагнит; 2) увеличить сечение стального сердечника электромагнита (так как при данных токе, напряженности магнитного поля, и стало быть, магнитной индукции увеличение сечения ведет к росту магнитного потока); 3) уменьшить воздушный зазор сердечника электромагнита (так как при уменьшении пути магнитных линий по воздуху уменьшается магнитное сопротивление).

Видео про электромагнит: