Что такое криволинейное движение. Криволинейное

В зависимости от формы траектории, движение делится на прямолинейное и криволинейное. В реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца движение планет, конца стрелки часов по циферблату и т.д.

Рисунок 1. Траектория и перемещение при криволинейном движении

Определение

Криволинейное движение -- это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). При движении по криволинейной траектории вектор перемещения $\overrightarrow{s}$ направлен по хорде (рис. 1), а l -- длина траектории. Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 2).

Рисунок 2. Мгновенная скорость при криволинейном движении

Однако более удобным является следующий подход. Можно представить это движение как совокупность нескольких движений по дугам окружностей (см. рис. 4.). Таких разбиений получится меньше, чем в предыдущем случае, кроме того, движение по окружности само является криволинейным.

Рисунок 4. Разбиение криволинейного движения на движения по дугам окружностей

Вывод

Для того, чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Задачей исследования криволинейного движения материальной точки является составление кинематического уравнения, описывающего это движение и позволяющего по заданным начальным условиям определить все характеристики этого движения.

Вам хорошо известно, что в зависимости от формы траектории движение делится на прямолинейное и криволинейное . С прямолинейным движением мы научились работать на предыдущих уроках, а именно решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Для начала определимся, какие принципиальные отличия есть у криволинейного движения (рис. 1) относительно прямолинейного и к чему эти отличия приводят.

Рис. 1. Траектория криволинейного движения

Поговорим о том, как удобно описывать движение тела при криволинейном движении.

Можно разбить движение на отдельные участки, на каждом из которых движение можно считать прямолинейным (рис. 2).

Рис. 2. Разбиение криволинейного движения на участки прямолинейного движения

Однако более удобным является следующий подход. Мы представим это движение как совокупность нескольких движений по дугам окружностей (рис. 3). Обратите внимание, что таких разбиений меньше, чем в предыдущем случае, кроме того, движение по окружности является криволинейным. К тому же примеры движения по окружности в природе встречается очень часто. Из этого можно сделать вывод:

Для того чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Рис. 3. Разбиение криволинейного движения на движения по дугам окружностей

Итак, начнем изучение криволинейного движения с изучения равномерного движения по окружности. Давайте разберемся, каковы принципиальные отличия криволинейного движения от прямолинейного. Для начала вспомним, что в девятом классе мы изучили тот факт, что скорость тела при движении по окружности направлена по касательной к траектории (рис. 4). Кстати, этот факт вы можете пронаблюдать на опыте, если посмотрите, как движутся искры при использовании точильного камня.

Рассмотрим движение тела по дуге окружности (рис. 5).

Рис. 5. Скорость тела при движении по окружности

Обратите внимание, что в данном случае модуль скорости тела в точке равен модулю скорости тела в точке :

Однако вектор не равен вектору . Итак, у нас появляется вектор разности скоростей (рис. 6):

Рис. 6. Вектор разности скоростей

Причем изменение скорости произошло через некоторое время . Таким образом, мы получаем знакомую комбинацию:

Это не что иное, как изменение скорости за промежуток времени, или ускорение тела. Можно сделать очень важный вывод:

Движение по криволинейной траектории является ускоренным. Природа этого ускорения – непрерывное изменение направление вектора скорости.

Еще раз отметим, что, даже если говорится, что тело равномерно движется по окружности, имеется в виду, что модуль скорости тела не изменяется. Однако такое движение всегда является ускоренным, поскольку изменяется направление скорости.

В девятом классе вы изучали, чему равно такое ускорение и как оно направлено (рис. 7). Центростремительное ускорение всегда направлено к центру окружности, по которой движется тело.

Рис. 7. Центростремительное ускорение

Модуль центростремительного ускорения может быть рассчитан по формуле:

Переходим к описанию равномерного движения тела по окружности. Договоримся, что скорость , которой вы пользовались по время описания поступательного движения, теперь будет называться линейной скоростью. И под линейной скоростью мы будем понимать мгновенную скорость в точке траектории вращающегося тела.

Рис. 8. Движение точек диска

Рассмотрим диск, который для определенности вращается по часовой стрелке. На его радиусе отметим две точки и (рис. 8). Рассмотрим их движение. За некоторое время эти точки переместятся по дугам окружности и станут точками и . Очевидно, что точка совершила большее перемещение, чем точка . Из этого можно сделать вывод, что чем дальше от оси вращения находится точка, тем с большей линейной скоростью она движется

Однако если внимательно посмотреть на точки и , можно сказать, что неизменным остался угол , на который они повернулись относительно оси вращения . Именно угловые характеристики мы и будем использовать для описания движения по окружности. Отметим, что для описания движения по окружности можно использовать угловые характеристики.

Начнем рассмотрение движения по окружности с самого простого случая – равномерного движения по окружности. Напомним, что равномерным поступательным движением называется движение, при котором за любые равные промежутки времени тело совершает одинаковые перемещения. По аналогии можно дать определение равномерного движения по окружности.

Равномерным движением по окружности называется движение, при котором за любые равные промежутки времени тело поворачивается на одинаковые углы.

Аналогично понятию линейной скорости вводится понятие угловой скорости.

Угловой скоростью равномерного движения ( называется физическая величина, равная отношению угла, на который повернулось тело, ко времени, за которое произошел этот поворот.

В физике чаще всего используется радианная мера угла. Например, угол в равен радиан. Измеряется угловая скорость в радианах в секунду:

Найдем связь между угловой скоростью вращения точки и линейной скоростью этой точки.

Рис. 9. Связь между угловой и линейной скоростью

Точка проходит при вращении дугу длиной , поворачиваясь при этом на угол . Из определения радианной меры угла можно записать:

Разделим левую и правую части равенства на промежуток времени , за который было совершено перемещение, затем воспользуемся определением угловой и линейной скоростей:

Обратим внимание, что чем дальше точка находится от оси вращения, тем выше ее линейная скорость. А точки, расположенные на самой оси вращения, неподвижны. Примером этого может служить карусель: чем ближе вы находитесь к центру карусели, тем легче вам на ней удержаться.

Такая зависимость линейной и угловой скоростей используется в геостационарных спутниках (спутники, которые всегда находятся над одной и той же точкой земной поверхности). Благодаря таким спутникам мы имеем возможность получать телевизионные сигналы.

Вспомним, что ранее мы вводили понятия периода и частоты вращения.

Период вращения – время одного полного оборота. Период вращения обозначается буквой и измеряется в секундах в СИ:

Частота вращения – физическая величина, равная количеству оборотов, которое тело совершает за единицу времени.

Частота обозначается буквой и измеряется в обратных секундах:

Они связаны соотношением:

Существует связь между угловой скоростью и частотой вращения тела. Если вспомнить, что полный оборот равен , легко увидеть, что угловая скорость:

Подставляя эти выражения в зависимость между угловой и линейной скоростью, можно получить зависимость линейной скорости от периода или частоты:

Запишем также связь между центростремительным ускорением и этими величинами:

Таким образом, мы знаем связь между всеми характеристиками равномерного движения по окружности.

Подытожим. На этом уроке мы начали описывать криволинейное движение. Мы поняли, каким образом можно связать криволинейное движение с движением по окружности. Движение по окружности всегда является ускоренным, а наличие ускорения обуславливает тот факт, что скорость всегда меняет свое направление. Такое ускорение называется центростремительным. Наконец, мы вспомнили некоторые характеристики движения по окружности (линейную скорость, угловую скорость, период и частоту вращения) и нашли соотношения между ними.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Аyp.ru ().
  2. Википедия ().

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

  1. Задачи 92, 94, 98, 106, 110 - сб. задач А.П. Рымкевич, изд. 10
  2. Вычислите угловую скорость движения минутной, секундной и часовой стрелок часов. Вычислите центростремительное ускорение, действующее на кончики этих стрелок, если радиус каждой из них равен одному метру.

Рассматривая криволинейное движение тела, мы увидим, что его скорость в разные моменты различна. Даже в том случае, когда модуль скорости не меняется, все же имеет место изменение направления скорости. В общем случае меняются и модуль и направление скорости.

Таким образом, при криволинейном движении скорость непрерывно изменяется, так что это движение происходит с ускорением. Для определения этого ускорения (по модулю и направлению) требуется найти изменение скорости как вектора, т. е. найти приращение модуля скорости и изменение ее направления.

Рис. 49. Изменение скорости при криволинейном движении

Пусть, например, точка, двигаясь криволинейно (рис. 49), имела в некоторый момент скорость а через малый промежуток времени - скорость . Приращение скорости есть разность между векторами и . Так как эти векторы имеют различное направление, то нужно взять их векторную разность. Приращение скорости выразится вектором , изображаемым стороной параллелограмма с диагональю и другой стороной . Ускорением называется отношение приращения скорости к промежутку времени , за который это приращение произошло. Значит, ускорение

По направлению совпадает с вектором .

Выбирая достаточно малым, придем к понятию мгновенного ускорения (ср. § 16); при произвольном вектор будет представлять среднее ускорение за промежуток времени .

Направление ускорения при криволинейном движении не совпадает с направлением скорости, в то время как для прямолинейного движения эти направления совпадают (или противоположны). Чтобы найти направление ускорения при криволинейном движении, достаточно сопоставить направления скоростей в двух близких точках траектории. Так как скорости направлены по касательным к траектории, то по виду самой траектории можно сделать заключение, в какую сторону от траектории направлено ускорение. Действительно, так как разность скоростей в двух близких точках траектории всегда направлена в ту сторону, куда искривляется траектория, то, значит, и ускорение всегда направлено в сторону вогнутости траектории. Например, когда шарик катится по изогнутому желобу (рис. 50), его ускорение на участках и направлено так, как показывают стрелки, причем это не зависит от того, катится шарик от к или в обратном направлении.

Рис. 50. Ускорения при криволинейном движении всегда направлены в сторону вогнутости траектории

Рис. 51. К выводу формулы для центростремительного ускорения

Рассмотрим равномерное движение точки по криволинейной траектории. Мы уже знаем, что это - ускоренное движение. Найдем ускорение. Для этого достаточно рассмотреть ускорение для частного случая равномерного движения по окружности. Возьмем два близких положения и движущейся точки, разделенных малым промежутком времени (рис. 51, а). Скорости движущейся точки в и равны по модулю, но различны по направлению. Найдем разность этих скоростей, пользуясь правилом треугольника (рис. 51, б). Треугольники и подобны, как равнобедренные треугольники с равными углами при вершине. Длину стороны , изображающей приращение скорости за промежуток времени , можно положить равной , где - модуль искомого ускорения. Сходственная ей сторона есть хорда дуги ; вследствие малости дуги длина ее хорды может быть приближенно принята равной длине дуги, т.е. . Далее, ; , где - радиус траектории. Из подобия треугольников следует, что отношения сходственных сторон в них равны:

откуда находим модуль искомого ускорения:

Направление ускорения перпендикулярно к хорде . Для достаточно малых промежутков времени можно считать, что касательная к дуге практически совпадает с ее хордой. Значит, ускорение можно считать направленным перпендикулярно (нормально) к касательной к траектории, т. е. по радиусу к центру окружности. Поэтому такое ускорение называют нормальным или центростремительным ускорением.

Если траектория - не окружность, а произвольная кривая линия, то в формуле (27.1) следует взять радиус окружности, ближе всего подходящей к кривой в данной точке. Направление нормального ускорения и в этом случае будет перпендикулярно к касательной к траектории в данной точке. Если при криволинейном движении ускорение постоянно по модулю и направлению, его можно найти как отношение приращения скорости к промежутку времени, за который это приращение произошло, каков бы ни был этот промежуток времени. Значит, в этом случае ускорение можно найти по формуле

аналогичной формуле (17.1) для прямолинейного движения с постоянным ускорением. Здесь - скорость тела в начальный момент, a - скорость в момент времени .

Вам хорошо известно, что в зависимости от формы траектории движение делится на прямолинейное и криволинейное . С прямолинейным движением мы научились работать на предыдущих уроках, а именно решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Для начала определимся, какие принципиальные отличия есть у криволинейного движения (рис. 1) относительно прямолинейного и к чему эти отличия приводят.

Рис. 1. Траектория криволинейного движения

Поговорим о том, как удобно описывать движение тела при криволинейном движении.

Можно разбить движение на отдельные участки, на каждом из которых движение можно считать прямолинейным (рис. 2).

Рис. 2. Разбиение криволинейного движения на участки прямолинейного движения

Однако более удобным является следующий подход. Мы представим это движение как совокупность нескольких движений по дугам окружностей (рис. 3). Обратите внимание, что таких разбиений меньше, чем в предыдущем случае, кроме того, движение по окружности является криволинейным. К тому же примеры движения по окружности в природе встречается очень часто. Из этого можно сделать вывод:

Для того чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Рис. 3. Разбиение криволинейного движения на движения по дугам окружностей

Итак, начнем изучение криволинейного движения с изучения равномерного движения по окружности. Давайте разберемся, каковы принципиальные отличия криволинейного движения от прямолинейного. Для начала вспомним, что в девятом классе мы изучили тот факт, что скорость тела при движении по окружности направлена по касательной к траектории (рис. 4). Кстати, этот факт вы можете пронаблюдать на опыте, если посмотрите, как движутся искры при использовании точильного камня.

Рассмотрим движение тела по дуге окружности (рис. 5).

Рис. 5. Скорость тела при движении по окружности

Обратите внимание, что в данном случае модуль скорости тела в точке равен модулю скорости тела в точке :

Однако вектор не равен вектору . Итак, у нас появляется вектор разности скоростей (рис. 6):

Рис. 6. Вектор разности скоростей

Причем изменение скорости произошло через некоторое время . Таким образом, мы получаем знакомую комбинацию:

Это не что иное, как изменение скорости за промежуток времени, или ускорение тела. Можно сделать очень важный вывод:

Движение по криволинейной траектории является ускоренным. Природа этого ускорения – непрерывное изменение направление вектора скорости.

Еще раз отметим, что, даже если говорится, что тело равномерно движется по окружности, имеется в виду, что модуль скорости тела не изменяется. Однако такое движение всегда является ускоренным, поскольку изменяется направление скорости.

В девятом классе вы изучали, чему равно такое ускорение и как оно направлено (рис. 7). Центростремительное ускорение всегда направлено к центру окружности, по которой движется тело.

Рис. 7. Центростремительное ускорение

Модуль центростремительного ускорения может быть рассчитан по формуле:

Переходим к описанию равномерного движения тела по окружности. Договоримся, что скорость , которой вы пользовались по время описания поступательного движения, теперь будет называться линейной скоростью. И под линейной скоростью мы будем понимать мгновенную скорость в точке траектории вращающегося тела.

Рис. 8. Движение точек диска

Рассмотрим диск, который для определенности вращается по часовой стрелке. На его радиусе отметим две точки и (рис. 8). Рассмотрим их движение. За некоторое время эти точки переместятся по дугам окружности и станут точками и . Очевидно, что точка совершила большее перемещение, чем точка . Из этого можно сделать вывод, что чем дальше от оси вращения находится точка, тем с большей линейной скоростью она движется

Однако если внимательно посмотреть на точки и , можно сказать, что неизменным остался угол , на который они повернулись относительно оси вращения . Именно угловые характеристики мы и будем использовать для описания движения по окружности. Отметим, что для описания движения по окружности можно использовать угловые характеристики.

Начнем рассмотрение движения по окружности с самого простого случая – равномерного движения по окружности. Напомним, что равномерным поступательным движением называется движение, при котором за любые равные промежутки времени тело совершает одинаковые перемещения. По аналогии можно дать определение равномерного движения по окружности.

Равномерным движением по окружности называется движение, при котором за любые равные промежутки времени тело поворачивается на одинаковые углы.

Аналогично понятию линейной скорости вводится понятие угловой скорости.

Угловой скоростью равномерного движения ( называется физическая величина, равная отношению угла, на который повернулось тело, ко времени, за которое произошел этот поворот.

В физике чаще всего используется радианная мера угла. Например, угол в равен радиан. Измеряется угловая скорость в радианах в секунду:

Найдем связь между угловой скоростью вращения точки и линейной скоростью этой точки.

Рис. 9. Связь между угловой и линейной скоростью

Точка проходит при вращении дугу длиной , поворачиваясь при этом на угол . Из определения радианной меры угла можно записать:

Разделим левую и правую части равенства на промежуток времени , за который было совершено перемещение, затем воспользуемся определением угловой и линейной скоростей:

Обратим внимание, что чем дальше точка находится от оси вращения, тем выше ее линейная скорость. А точки, расположенные на самой оси вращения, неподвижны. Примером этого может служить карусель: чем ближе вы находитесь к центру карусели, тем легче вам на ней удержаться.

Такая зависимость линейной и угловой скоростей используется в геостационарных спутниках (спутники, которые всегда находятся над одной и той же точкой земной поверхности). Благодаря таким спутникам мы имеем возможность получать телевизионные сигналы.

Вспомним, что ранее мы вводили понятия периода и частоты вращения.

Период вращения – время одного полного оборота. Период вращения обозначается буквой и измеряется в секундах в СИ:

Частота вращения – физическая величина, равная количеству оборотов, которое тело совершает за единицу времени.

Частота обозначается буквой и измеряется в обратных секундах:

Они связаны соотношением:

Существует связь между угловой скоростью и частотой вращения тела. Если вспомнить, что полный оборот равен , легко увидеть, что угловая скорость:

Подставляя эти выражения в зависимость между угловой и линейной скоростью, можно получить зависимость линейной скорости от периода или частоты:

Запишем также связь между центростремительным ускорением и этими величинами:

Таким образом, мы знаем связь между всеми характеристиками равномерного движения по окружности.

Подытожим. На этом уроке мы начали описывать криволинейное движение. Мы поняли, каким образом можно связать криволинейное движение с движением по окружности. Движение по окружности всегда является ускоренным, а наличие ускорения обуславливает тот факт, что скорость всегда меняет свое направление. Такое ускорение называется центростремительным. Наконец, мы вспомнили некоторые характеристики движения по окружности (линейную скорость, угловую скорость, период и частоту вращения) и нашли соотношения между ними.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Аyp.ru ().
  2. Википедия ().

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

  1. Задачи 92, 94, 98, 106, 110 - сб. задач А.П. Рымкевич, изд. 10
  2. Вычислите угловую скорость движения минутной, секундной и часовой стрелок часов. Вычислите центростремительное ускорение, действующее на кончики этих стрелок, если радиус каждой из них равен одному метру.